Suppr超能文献

处理生理信号反卷积中的非负性:一种非线性随机方法。

Handling non-negativity in deconvolution of physiological signals: a nonlinear stochastic approach.

作者信息

Pillonetto Gianluigi, Sparacino Giovanni, Cobelli Claudio

机构信息

Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Padova, Via Gradenigo 6a, 35131 Padova, Italy.

出版信息

Ann Biomed Eng. 2002 Sep;30(8):1077-87. doi: 10.1114/1.1510449.

Abstract

A stochastic interpretation of Tikhonov regularization has been recently proposed to attack some open problems of deconvolution when dealing with physiological systems, i.e., in addition to ill-conditioning, infrequent and nonuniform sampling and necessity of having credible confidence intervals. However, the possible violation of the non-negativity constraint cannot be dealt with on firm statistical grounds, since the model of the unknown signal is compatible with negative realizations. In this paper, we propose a new model of the unknown input which excludes negative values. The model is embedded within a Bayesian estimation framework to calculate, by resorting to a Markov chain Monte Carlo algorithm, a nonlinear estimate of the unknown input given by its a posteriori expected value. Applications to simulated and real hormone secretion/pharmacokinetic problems are presented which show that this nonlinear approach is more accurate than the linear one. In addition, more realistic confidence intervals are obtained.

摘要

最近有人提出对蒂霍诺夫正则化进行随机解释,以解决处理生理系统时反卷积的一些开放性问题,即除了病态问题、采样不频繁和不均匀以及需要有可靠的置信区间之外的问题。然而,由于未知信号模型与负实值兼容,所以无法基于坚实的统计依据来处理可能违反非负性约束的情况。在本文中,我们提出了一种排除负值的未知输入新模型。该模型嵌入在贝叶斯估计框架中,通过马尔可夫链蒙特卡罗算法来计算未知输入的非线性估计值,该估计值由其后验期望值给出。文中给出了对模拟和实际激素分泌/药代动力学问题的应用,结果表明这种非线性方法比线性方法更准确。此外,还获得了更符合实际的置信区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验