Suppr超能文献

通过预测α碳原子坐标在电子密度图中自动构建蛋白质主链模型。

Automatic modeling of protein backbones in electron-density maps via prediction of Calpha coordinates.

作者信息

Ioerger Thomas R, Sacchettini James C

机构信息

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2043-54. doi: 10.1107/s0907444902016724. Epub 2002 Nov 23.

Abstract

Most crystallographers today solve protein structures by first building as much of the protein backbone as possible and then modeling the side chains. Automating the determination of backbone coordinates by computer-based interpretation of the electron density would enhance the speed and possibly improve the accuracy of the structure-solution process. In this paper, a new computational procedure called CAPRA is described that predicts coordinates of Calpha atoms in density maps and outputs chains of Calpha atoms representing the backbone of the protein. The result constitutes a significant step beyond tracing the density, because there is ideally a one-to-one correspondence between atoms predicted in the chains output by CAPRA and Calpha atoms in the true structure (refined model). CAPRA is based on pattern-recognition techniques, including extraction of rotation-invariant numeric features to represent patterns in the density and use of a neural network to predict which pseudo-atoms in the trace are closest to true Calpha atoms. Experiments with several MAD and MIR electron-density maps of 2.4-2.8 A resolution reveal that CAPRA is capable of building approximately 90% of the backbone of a protein molecule, with an r.m.s. error for Calpha coordinates of around 0.9 A.

摘要

如今,大多数晶体学家通过先尽可能构建蛋白质主链,然后对侧链进行建模来解析蛋白质结构。通过基于计算机对电子密度的解读来自动确定主链坐标,将提高结构解析过程的速度,并可能提高其准确性。本文描述了一种名为CAPRA的新计算程序,它能预测密度图中Cα原子的坐标,并输出代表蛋白质主链的Cα原子链。该结果是在追踪密度方面迈出的重要一步,因为在CAPRA输出的链中预测的原子与真实结构(精制模型)中的Cα原子理想情况下存在一一对应关系。CAPRA基于模式识别技术,包括提取旋转不变数字特征以表示密度中的模式,以及使用神经网络预测追踪中的哪些伪原子最接近真实的Cα原子。对分辨率为2.4 - 2.8 Å的几个MAD和MIR电子密度图进行的实验表明,CAPRA能够构建蛋白质分子约90%的主链,Cα坐标的均方根误差约为0.9 Å。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验