Suppr超能文献

关于过滤假阳性跨膜蛋白预测结果。

On filtering false positive transmembrane protein predictions.

作者信息

Cserzö Miklos, Eisenhaber Frank, Eisenhaber Birgit, Simon Istvan

机构信息

University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK.

出版信息

Protein Eng. 2002 Sep;15(9):745-52. doi: 10.1093/protein/15.9.745.

Abstract

While helical transmembrane (TM) region prediction tools achieve high (>90%) success rates for real integral membrane proteins, they produce a considerable number of false positive hits in sequences of known nontransmembrane queries. We propose a modification of the dense alignment surface (DAS) method that achieves a substantial decrease in the false positive error rate. Essentially, a sequence that includes possible transmembrane regions is compared in a second step with TM segments in a sequence library of documented transmembrane proteins. If the performance of the query sequence against the library of documented TM segment-containing sequences in this test is lower than an empirical threshold, it is classified as a non-transmembrane protein. The probability of false positive prediction for trusted TM region hits is expressed in terms of E-values. The modified DAS method, the DAS-TMfilter algorithm, has an unchanged high sensitivity for TM segments ( approximately 95% detected in a learning set of 128 documented transmembrane proteins). At the same time, the selectivity measured over a non-redundant set of 526 soluble proteins with known 3D structure is approximately 99%, mainly because a large number of falsely predicted single membrane-pass proteins are eliminated by the DAS-TMfilter algorithm.

摘要

虽然螺旋跨膜(TM)区域预测工具对真正的整合膜蛋白能达到较高(>90%)的成功率,但它们在已知非跨膜查询序列中会产生相当数量的假阳性命中结果。我们提出了一种对密集比对表面(DAS)方法的改进,可大幅降低假阳性错误率。本质上,在第二步中,将包含可能跨膜区域的序列与已记录跨膜蛋白序列库中的TM片段进行比较。如果在该测试中查询序列针对已记录的含TM片段序列库的性能低于经验阈值,则将其分类为非跨膜蛋白。对于可信的TM区域命中结果,假阳性预测的概率用E值表示。改进后的DAS方法,即DAS-TMfilter算法,对TM片段具有不变的高灵敏度(在128个已记录跨膜蛋白的学习集中约95%被检测到)。同时,在一组具有已知三维结构的526个可溶性蛋白的非冗余集上测量的选择性约为99%,这主要是因为DAS-TMfilter算法消除了大量错误预测的单跨膜蛋白。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验