Suppr超能文献

海马体对环境几何形状的表征能告诉我们关于赫布学习的哪些信息?

What can the hippocampal representation of environmental geometry tell us about Hebbian learning?

作者信息

Lever Colin, Burgess Neil, Cacucci Francesca, Hartley Tom, O'Keefe John

机构信息

Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Biol Cybern. 2002 Dec;87(5-6):356-72. doi: 10.1007/s00422-002-0360-z.

Abstract

The importance of the hippocampus in spatial representation is well established. It is suggested that the rodent hippocampal network should provide an optimal substrate for the study of unsupervised Hebbian learning. We focus on the firing characteristics of hippocampal place cells in morphologically different environments. A hard-wired quantitative geometric model of individual place fields is reviewed and presented as the framework in which to understand the additional effects of synaptic plasticity. Existent models employing Hebbian learning are also reviewed. New information is presented regarding the dynamics of place field plasticity over short and long time scales in experiments using barriers and differently shaped walled environments. It is argued that aspects of the temporal dynamics of stability and plasticity in the hippocampal place cell representation both indicate modifications to, and inform the nature of, the synaptic plasticity in place cell models. Our results identify a potential neural basis for long-term incidental learning of environments and provide strong constraints for the way the unsupervised learning in cell assemblies envisaged by Hebb might occur within the hippocampus.

摘要

海马体在空间表征中的重要性已得到充分证实。有人提出,啮齿动物的海马体网络应为无监督赫布学习的研究提供一个理想的基质。我们专注于形态学上不同环境中海马体位置细胞的放电特征。回顾了单个位置野的硬连线定量几何模型,并将其作为理解突触可塑性附加效应的框架呈现出来。还回顾了采用赫布学习的现有模型。在使用障碍物和不同形状的围墙环境的实验中,给出了关于位置野可塑性在短期和长期时间尺度上动态变化的新信息。有人认为,海马体位置细胞表征中稳定性和可塑性的时间动态方面既表明了对位置细胞模型中突触可塑性的修正,也为其性质提供了信息。我们的结果确定了环境长期偶然学习的潜在神经基础,并为赫布设想的细胞集合中的无监督学习在海马体内可能发生的方式提供了强有力的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验