Research Department of Cell and Developmental Biology, University College London, London, UK.
Hippocampus. 2020 Dec;30(12):1347-1355. doi: 10.1002/hipo.23246. Epub 2020 Jun 25.
The hippocampus has long been observed to encode a representation of an animal's position in space. Recent evidence suggests that the nature of this representation is somewhat predictive and can be modeled by learning a successor representation (SR) between distinct positions in an environment. However, this discretization of space is subjective making it difficult to formulate predictions about how some environmental manipulations should impact the hippocampal representation. Here, we present a model of place and grid cell firing as a consequence of learning a SR from a basis set of known neurobiological features-boundary vector cells (BVCs). The model describes place cell firing as the successor features of the SR, with grid cells forming a low-dimensional representation of these successor features. We show that the place and grid cells generated using the BVC-SR model provide a good account of biological data for a variety of environmental manipulations, including dimensional stretches, barrier insertions, and the influence of environmental geometry on the hippocampal representation of space.
海马体长期以来一直被观察到对动物在空间中的位置进行编码。最近的证据表明,这种表示的性质具有一定的预测性,可以通过在环境中的不同位置之间学习后继表示 (SR) 来进行建模。然而,这种空间的离散化是主观的,因此很难制定关于某些环境操作应该如何影响海马体表示的预测。在这里,我们提出了一种基于已知神经生物学特征 - 边界矢量细胞 (BVC) 的基础集从学习后继表示 (SR) 的位置和网格细胞发射模型。该模型将位置细胞的发射描述为 SR 的后继特征,网格细胞形成这些后继特征的低维表示。我们表明,使用 BVC-SR 模型生成的位置和网格细胞很好地解释了各种环境操作的生物数据,包括维度拉伸、障碍物插入以及环境几何形状对空间中海马体表示的影响。