Suppr超能文献

空间导航的神经生物学后继特征。

Neurobiological successor features for spatial navigation.

机构信息

Research Department of Cell and Developmental Biology, University College London, London, UK.

出版信息

Hippocampus. 2020 Dec;30(12):1347-1355. doi: 10.1002/hipo.23246. Epub 2020 Jun 25.

Abstract

The hippocampus has long been observed to encode a representation of an animal's position in space. Recent evidence suggests that the nature of this representation is somewhat predictive and can be modeled by learning a successor representation (SR) between distinct positions in an environment. However, this discretization of space is subjective making it difficult to formulate predictions about how some environmental manipulations should impact the hippocampal representation. Here, we present a model of place and grid cell firing as a consequence of learning a SR from a basis set of known neurobiological features-boundary vector cells (BVCs). The model describes place cell firing as the successor features of the SR, with grid cells forming a low-dimensional representation of these successor features. We show that the place and grid cells generated using the BVC-SR model provide a good account of biological data for a variety of environmental manipulations, including dimensional stretches, barrier insertions, and the influence of environmental geometry on the hippocampal representation of space.

摘要

海马体长期以来一直被观察到对动物在空间中的位置进行编码。最近的证据表明,这种表示的性质具有一定的预测性,可以通过在环境中的不同位置之间学习后继表示 (SR) 来进行建模。然而,这种空间的离散化是主观的,因此很难制定关于某些环境操作应该如何影响海马体表示的预测。在这里,我们提出了一种基于已知神经生物学特征 - 边界矢量细胞 (BVC) 的基础集从学习后继表示 (SR) 的位置和网格细胞发射模型。该模型将位置细胞的发射描述为 SR 的后继特征,网格细胞形成这些后继特征的低维表示。我们表明,使用 BVC-SR 模型生成的位置和网格细胞很好地解释了各种环境操作的生物数据,包括维度拉伸、障碍物插入以及环境几何形状对空间中海马体表示的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6e/8432165/f3e6c4046030/HIPO-30-1347-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验