Dauter Zbigniew
Synchrotron Radiation Research Section, National Cancer Institute, Brookhaven National Laboratory, Building 725A-X9, Upton, NY 11973, USA.
Curr Opin Struct Biol. 2002 Oct;12(5):674-8. doi: 10.1016/s0959-440x(02)00372-x.
Recent progress in macromolecular phasing, in part stimulated by the high-throughput structural biology initiatives, has made this crucial stage of the elucidation of crystal structures easier and more automatic. A quick soak in various salts leads to the rapid incorporation of the anomalously scattering ions, suitable for phasing by MAD (multiwavelength anomalous dispersion), SAD (single-wavelength anomalous dispersion) or MIR (multiple isomorphous replacement) methods. The availability of stable synchrotron beam lines equipped with elaborate hardware control and sophisticated data processing programs makes it possible to collect very accurate diffraction data and to solve structures from the very weak anomalous signal of such atoms as sulfur or phosphorus, inherently present in macromolecules. The current progress in phasing, coupled with the parallel advances in protein crystallization, diffraction data collection and so on, suggests that, in the near future, the process of macromolecular crystal structure elucidation may become fully automatic.
在高通量结构生物学计划的部分推动下,大分子相位测定方面的最新进展使晶体结构解析这一关键阶段变得更加轻松和自动化。在各种盐溶液中快速浸泡,可促使反常散射离子迅速掺入,适用于通过多波长反常色散(MAD)、单波长反常色散(SAD)或多同晶置换(MIR)方法进行相位测定。配备精密硬件控制和先进数据处理程序的稳定同步辐射光束线的出现,使得收集非常精确的衍射数据以及从大分子中固有存在的诸如硫或磷等原子的非常微弱的反常信号中解析结构成为可能。相位测定方面的当前进展,再加上蛋白质结晶、衍射数据收集等方面的同步进步,表明在不久的将来,大分子晶体结构解析过程可能会完全自动化。