Swadlow Harvey A
Department of Psychology, The University of Connecticut, Storrs, CT 06269, USA.
Cereb Cortex. 2003 Jan;13(1):25-32. doi: 10.1093/cercor/13.1.25.
'Fast-spike' interneurons of layer 4 mediate thalamocortical feedforward inhibition and can, with some confidence, be identified using extracellular methods. In somatosensory barrel cortex of awake rabbits, these 'suspected inhibitory interneurons' (SINs) have distinct receptive field properties: they respond to vibrissa displacement with very high sensitivity and temporal fidelity. However, they lack the directional specificity that is clearly seen in most of their ventrobasal thalamocortical afferents. Several lines of evidence show that layer-4 SINs receive a potent and highly convergent and divergent functional input from topographically aligned thalamocortical neurons. Whereas the unselective pooling of convergent thalamocortical inputs onto SINs generates sensitive and broadly tuned inhibitory receptive fields, the potent divergence of single thalamocortical neurons onto many SINs generates sharply synchronous (+/-1 ms) activity (because of coincident EPSPs). Synchronous discharge of these interneurons following thalamocortical impulses will generate a synchronous feedforward release of GABA within the barrel. Thalamocortical impulses will, therefore, generate only a brief 'window of excitability' during which spikes can occur in the post-synaptic targets of fast-spike interneurons. This fast, synchronous, highly sensitive and broadly tuned feed-forward inhibitory network is well suited to suppress spike generation in spiny neurons following all but the most optimal feedforward excitatory inputs.
第4层的“快放电”中间神经元介导丘脑皮质前馈抑制,并且可以通过细胞外方法较为可靠地识别出来。在清醒兔子的体感桶状皮质中,这些“疑似抑制性中间神经元”(SINs)具有独特的感受野特性:它们对触须位移的反应具有非常高的灵敏度和时间保真度。然而,它们缺乏在其大多数腹侧基底丘脑皮质传入纤维中明显可见的方向特异性。多项证据表明,第4层SINs从拓扑排列的丘脑皮质神经元接收强大且高度汇聚和发散的功能性输入。虽然汇聚的丘脑皮质输入无选择性地汇集到SINs上会产生敏感且广泛调谐的抑制性感受野,但单个丘脑皮质神经元向许多SINs的强大发散会产生尖锐同步(±1毫秒)的活动(由于同时发生的兴奋性突触后电位)。丘脑皮质冲动后这些中间神经元的同步放电将在桶状区内产生GABA的同步前馈释放。因此,丘脑皮质冲动只会产生一个短暂的“兴奋窗口”,在此期间快放电中间神经元的突触后靶点可能会产生动作电位。这种快速、同步、高度敏感且广泛调谐的前馈抑制网络非常适合抑制除了最优化的前馈兴奋性输入之外的所有情况下棘状神经元的动作电位产生。