Suppr超能文献

利用基于XML的电子病历提取经验性临床知识。一种为基于医学案例推理系统生成案例的自动化方法。

Leveraging XML-based electronic medical records to extract experiential clinical knowledge. An automated approach to generate cases for medical case-based reasoning systems.

作者信息

Abidi Syed Sibte Raza, Manickam Selvakumar

机构信息

Faculty of Computer Science, Dalhousie University, 6050 University Avenue, NS, B3S 1J3, Halifax, Canada.

出版信息

Int J Med Inform. 2002 Dec 18;68(1-3):187-203. doi: 10.1016/s1386-5056(02)00076-x.

Abstract

Case-based reasoning (CBR)-driven medical diagnostic systems demand a critical mass of up-to-date diagnostic-quality cases that depict the problem-solving methodology of medical experts. In practical terms, procurement of CBR-compliant cases is quite challenging, as this requires medical experts to map their experiential knowledge to an unfamiliar computational formalism. In this paper, we propose a novel medical knowledge acquisition approach that leverages routinely generated electronic medical records (EMRs) as an alternate source for CBR-compliant cases. We present a methodology to autonomously transform XML-based EMR to specialized CBR-compliant cases for CBR-driven medical diagnostic systems. Our multi-stage methodology features: (a) collection of heterogeneous EMR from Internet-accessible EMR repositories via intelligent agents, (b) automated transformation of both the structure and content of generic EMR to specialized CBR-compliant cases, and (c) inductive estimation of the weight of each case-defining attribute. The computational implementation of our methodology is presented as case acquisition and transcription info-structure (CATI).

摘要

基于案例推理(CBR)驱动的医学诊断系统需要大量最新的、具有诊断质量的案例,以描绘医学专家的问题解决方法。实际上,获取符合CBR的案例颇具挑战性,因为这要求医学专家将他们的经验知识映射到一种不熟悉的计算形式中。在本文中,我们提出了一种新颖的医学知识获取方法,该方法利用常规生成的电子病历(EMR)作为符合CBR案例的替代来源。我们提出了一种方法,可将基于XML的EMR自动转换为适用于CBR驱动的医学诊断系统的、符合CBR的专用案例。我们的多阶段方法具有以下特点:(a)通过智能代理从可通过互联网访问的EMR存储库中收集异构EMR,(b)将通用EMR的结构和内容自动转换为符合CBR的专用案例,以及(c)对每个案例定义属性的权重进行归纳估计。我们方法的计算实现以案例获取和转录信息结构(CATI)的形式呈现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验