Suppr超能文献

Chemical modification as a probe of the topography and reactivity of horse-spleen apoferritin.

作者信息

Wetz K, Crichton R R

出版信息

Eur J Biochem. 1976 Jan 15;61(2):545-50. doi: 10.1111/j.1432-1033.1976.tb10049.x.

Abstract

In apoferritin, but not in ferritin, 1.0 +/- 0.1 cysteine residue per subunit can be modified. In ferritin 3.3 +/- 0.3 lysine residues and 7.1 +/- 0.7 carboxyl groups per subunit can be modified, whilst the corresponding values for apoferritin are 4.4 +/- 0.4 lysine residues and 11.0 +/- 0.4 carboxyl groups per subunit. Modification of lysine residues which maleic anhydride and carboxyl groups with glycineamide in apoferritin which has been dissociated and denatured in guanidine hydrochloride leads to the introduction of 9.1 +/- 0.5 maleyl groups per subunit and 22.0 +/- 0.9 glycineamide residues per subunit. Whereas unmodified apoferritin subunit can be reassociated from guanidine hydrochloride to apoferritin monomer, the ability of maleylated apoferritin to reassociate is impaired. Apoferritin in which all the carboxyl groups have been blocked with glycineamide cannot be reassociated to apoferritin and exists in solution as stable subunits. The modification of one cysteine residue per subunit, of 3 or 4 lysine residues per subunit or of 7 carboxyl groups per subunit has no effect on the catalytic activity of apoferritin. In contrast the modification of 11 carboxyl groups per subunit completely abolishes the catalytic properties of the protein. We conclude that one or more carboxyl groups are essential for the catalytic activity of horse spleen apoferritin.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验