Suppr超能文献

来自一种抗金属β-变形菌的亚砷酸盐氧化酶aox基因。

Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium.

作者信息

Muller Daniel, Lièvremont Didier, Simeonova Diliana Dancheva, Hubert Jean-Claude, Lett Marie-Claire

机构信息

Laboratoire de Dynamique, Evolution et Expression des Génomes de Micro-Organismes, FRE2326 Université Louis-Pasteur/CNRS, 67083 Strasbourg cedex, France.

出版信息

J Bacteriol. 2003 Jan;185(1):135-41. doi: 10.1128/JB.185.1.135-141.2003.

Abstract

The beta-proteobacterial strain ULPAs1, isolated from an arsenic-contaminated environment, is able to efficiently oxidize arsenite [As(III)] to arsenate [As(V)]. Mutagenesis with a lacZ-based reporter transposon yielded two knockout derivatives deficient in arsenite oxidation. Sequence analysis of the DNA flanking the transposon insertions in the two mutants identified two adjacent open reading frames, named aoxA and aoxB, as well as a putative promoter upstream of the aoxA gene. Reverse transcription-PCR data indicated that these genes are organized in an operonic structure. The proteins encoded by aoxA and aoxB share 64 and 72% identity with the small Rieske subunit and the large subunit of the purified and crystallized arsenite oxidase of Alcaligenes faecalis, respectively (P. J. Ellis, T. Conrads, R. Hille, and P. Kuhn, Structure [Cambridge] 9:125-132, 2001). Importantly, almost all amino acids involved in cofactor interactions in both subunits of the A. faecalis enzyme were conserved in the corresponding sequences of strain ULPAs1. An additional Tat (twin-arginine translocation) signal peptide sequence was detected at the N terminus of the protein encoded by aoxA, strongly suggesting that the Tat pathway is involved in the translocation of the arsenite oxidase to its known periplasmic location.

摘要

从砷污染环境中分离出的β-变形杆菌菌株ULPAs1能够有效地将亚砷酸盐[As(III)]氧化为砷酸盐[As(V)]。用基于lacZ的报告转座子进行诱变产生了两个亚砷酸盐氧化缺陷的敲除衍生物。对两个突变体中转座子插入侧翼的DNA进行序列分析,鉴定出两个相邻的开放阅读框,分别命名为aoxA和aoxB,以及aoxA基因上游的一个假定启动子。逆转录PCR数据表明这些基因以操纵子结构组织。aoxA和aoxB编码的蛋白质分别与粪产碱杆菌纯化和结晶的亚砷酸盐氧化酶的小Rieske亚基和大亚基具有64%和72%的同一性(P. J. Ellis、T. Conrads、R. Hille和P. Kuhn,,《结构》[剑桥]9:125-132,2001)。重要的是,粪产碱杆菌酶两个亚基中参与辅因子相互作用的几乎所有氨基酸在菌株ULPAs1的相应序列中都是保守的。在aoxA编码的蛋白质的N末端检测到一个额外的Tat(双精氨酸转运)信号肽序列,强烈表明Tat途径参与,将亚砷酸盐氧化酶转运到其已知的周质位置。

相似文献

1
Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium.
J Bacteriol. 2003 Jan;185(1):135-41. doi: 10.1128/JB.185.1.135-141.2003.
2
Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
Res Microbiol. 2015 Apr;166(3):205-14. doi: 10.1016/j.resmic.2015.02.010. Epub 2015 Mar 6.
3
Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24.
Appl Environ Microbiol. 2009 Aug;75(15):5141-7. doi: 10.1128/AEM.02798-08. Epub 2009 Jun 12.
4
Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
Appl Microbiol Biotechnol. 2009 Jun;83(4):715-25. doi: 10.1007/s00253-009-1929-4. Epub 2009 Mar 13.
6
Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26.
J Bacteriol. 2004 Mar;186(6):1614-9. doi: 10.1128/JB.186.6.1614-1619.2004.
7
Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans.
BMC Microbiol. 2010 Feb 18;10:53. doi: 10.1186/1471-2180-10-53.
10
Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
Appl Environ Microbiol. 2005 Oct;71(10):6206-15. doi: 10.1128/AEM.71.10.6206-6215.2005.

引用本文的文献

2
Arsenate reductase of Rufibacter tibetensis is a metallophosphoesterase evolved to catalyze redox reactions.
Mol Microbiol. 2024 Aug;122(2):201-212. doi: 10.1111/mmi.15289. Epub 2024 Jun 22.
5
Proteomics and transcriptomic analysis of strain AS2 under arsenite stress and its potential role in arsenic removal.
Curr Res Microb Sci. 2021 Jan 13;2:100020. doi: 10.1016/j.crmicr.2021.100020. eCollection 2021 Dec.
6
The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health.
Geohealth. 2021 Oct 1;5(10):e2020GH000380. doi: 10.1029/2020GH000380. eCollection 2021 Oct.
7
Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils.
Arch Microbiol. 2021 Sep;203(7):4677-4692. doi: 10.1007/s00203-021-02460-x. Epub 2021 Jun 28.
8
Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation.
Front Microbiol. 2020 Sep 15;11:569282. doi: 10.3389/fmicb.2020.569282. eCollection 2020.
9
Effect of arsenite and growth in biofilm conditions on the evolution of sp. CB2.
Microb Genom. 2020 Oct;6(10). doi: 10.1099/mgen.0.000447.
10
Homology Modeling and Probable Active Site Cavity Prediction of Uncharacterized Arsenate Reductase in Bacterial spp.
Appl Biochem Biotechnol. 2021 Jan;193(1):1-18. doi: 10.1007/s12010-020-03392-w. Epub 2020 Aug 18.

本文引用的文献

1
Bacterial oxidation of arsenite.
Nature. 1949 Jul 9;164(4158):76. doi: 10.1038/164076a0.
2
Bacterial Dissimilatory Reduction of Arsenic(V) to Arsenic(III) in Anoxic Sediments.
Appl Environ Microbiol. 1996 May;62(5):1664-9. doi: 10.1128/aem.62.5.1664-1669.1996.
3
Bacterial oxidation of arsenite. II. The activity of washed suspensions.
Aust J Biol Sci. 1954 Nov;7(4):479-95. doi: 10.1071/bi9540479.
5
6
Arsenic removal during conventional aluminium-based drinking-water treatment.
Water Res. 2001 May;35(7):1659-64. doi: 10.1016/s0043-1354(00)00424-3.
8
A universal system for the transport of redox proteins: early roots and latest developments.
Biophys Chem. 2000 Aug 30;86(2-3):131-40. doi: 10.1016/s0301-4622(00)00149-6.
9
The Tat protein export pathway.
Mol Microbiol. 2000 Jan;35(2):260-74. doi: 10.1046/j.1365-2958.2000.01719.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验