Suppr超能文献

化能自养型亚砷酸盐氧化菌NT-26的含钼亚砷酸盐氧化酶

Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26.

作者信息

Santini Joanne M, vanden Hoven Rachel N

机构信息

Department of Microbiology, La Trobe University, 3086 Victoria, Australia.

出版信息

J Bacteriol. 2004 Mar;186(6):1614-9. doi: 10.1128/JB.186.6.1614-1619.2004.

Abstract

The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an alpha2beta2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per alpha2beta2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc1 and b6f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.

摘要

化能无机自养菌NT - 26通过周质亚砷酸盐氧化酶将亚砷酸盐氧化为砷酸盐。该酶的纯化及初步特性分析表明:(i)它包含两个异源亚基,AroA(98 kDa)和AroB(14 kDa);(ii)天然分子量为219 kDa,表明为α2β2结构;(iii)每个α2β2单元含有两个钼原子和9个或10个铁原子。编码该酶的基因已被克隆和测序。序列分析显示,其与粪产碱杆菌的亚砷酸盐氧化酶、β - 变形菌ULPAs1的假定亚砷酸盐氧化酶以及嗜火栖热菌、嗜热栖热硫化叶菌和橙黄嗜热栖热放线菌的假定蛋白具有相似性。有趣的是,发现AroA亚基与二甲基亚砜还原酶家族中酶的含钼亚基相似,而AroB亚基与细胞色素bc1和b6f复合物的 Rieske 铁硫蛋白相似。NT - 26亚砷酸盐氧化酶可能通过Tat分泌途径输出到周质,其中AroB前导序列用于输出。由于aroA突变体不能利用亚砷酸盐进行化能无机自养生长,从而证实了NT - 26从亚砷酸盐氧化中获取能量。该突变体在有亚砷酸盐存在的情况下能够进行异养生长;然而,亚砷酸盐未被氧化为砷酸盐。

相似文献

1
Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26.
J Bacteriol. 2004 Mar;186(6):1614-9. doi: 10.1128/JB.186.6.1614-1619.2004.
3
The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster.
PLoS One. 2013 Aug 30;8(8):e72535. doi: 10.1371/journal.pone.0072535. eCollection 2013.
4
Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium.
J Bacteriol. 2003 Jan;185(1):135-41. doi: 10.1128/JB.185.1.135-141.2003.
7
The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily.
J Biol Chem. 2010 Jul 2;285(27):20442-51. doi: 10.1074/jbc.M110.113811. Epub 2010 Apr 26.
9
The NT-26 cytochrome c552 and its role in arsenite oxidation.
Biochim Biophys Acta. 2007 Feb;1767(2):189-96. doi: 10.1016/j.bbabio.2007.01.009. Epub 2007 Jan 23.
10
Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c.
Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):865-872. doi: 10.1016/j.bbabio.2017.08.003. Epub 2017 Aug 8.

引用本文的文献

1
Bacteria Under Metal Stress-Molecular Mechanisms of Metal Tolerance.
Int J Mol Sci. 2025 Jun 14;26(12):5716. doi: 10.3390/ijms26125716.
3
Heavy Metal and Rice in Gluten-Free Diets: Are They a Risk?
Nutrients. 2023 Jun 30;15(13):2975. doi: 10.3390/nu15132975.
4
The structure of the complex between the arsenite oxidase from Pseudorhizobium banfieldiae sp. strain NT-26 and its native electron acceptor cytochrome c.
Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):345-352. doi: 10.1107/S2059798323002103. Epub 2023 Mar 30.
5
Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain.
Environ Microbiol. 2023 Aug;25(8):1538-1548. doi: 10.1111/1462-2920.16380. Epub 2023 Mar 28.
6
Into the darkness: the ecologies of novel 'microbial dark matter' phyla in an Antarctic lake.
Environ Microbiol. 2022 May;24(5):2576-2603. doi: 10.1111/1462-2920.16026. Epub 2022 May 4.
8
Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool.
ISME J. 2022 Apr;16(4):1163-1175. doi: 10.1038/s41396-021-01165-9. Epub 2021 Dec 7.
9
Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils.
Arch Microbiol. 2021 Sep;203(7):4677-4692. doi: 10.1007/s00203-021-02460-x. Epub 2021 Jun 28.

本文引用的文献

1
Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium.
J Bacteriol. 2003 Jan;185(1):135-41. doi: 10.1128/JB.185.1.135-141.2003.
2
Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.
Appl Environ Microbiol. 2002 Oct;68(10):4795-802. doi: 10.1128/AEM.68.10.4795-4802.2002.
3
The active site of arsenite oxidase from Alcaligenes faecalis.
J Am Chem Soc. 2002 Sep 25;124(38):11276-7. doi: 10.1021/ja027684q.
4
Microbial arsenic: from geocycles to genes and enzymes.
FEMS Microbiol Rev. 2002 Aug;26(3):311-25. doi: 10.1111/j.1574-6976.2002.tb00617.x.
6
Arsenite oxidation and arsenate respiration by a new Thermus isolate.
FEMS Microbiol Lett. 2001 Nov 13;204(2):335-40. doi: 10.1111/j.1574-6968.2001.tb10907.x.
7
9
The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.
Mol Microbiol. 2001 Jun;40(6):1391-401. doi: 10.1046/j.1365-2958.2001.02485.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验