Suppr超能文献

谷氨酸棒杆菌ATCC 13032中砷抗性相关基因的分析。

Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.

作者信息

Ordóñez Efrén, Letek Michal, Valbuena Noelia, Gil José A, Mateos Luis M

机构信息

Area de Microbiología, Departamento de Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain.

出版信息

Appl Environ Microbiol. 2005 Oct;71(10):6206-15. doi: 10.1128/AEM.71.10.6206-6215.2005.

Abstract

Corynebacterium glutamicum is able to grow in media containing up to 12 mM arsenite and 500 mM arsenate and is one of the most arsenic-resistant microorganisms described to date. Two operons (ars1 and ars2) involved in arsenate and arsenite resistance have been identified in the complete genome sequence of Corynebacterium glutamicum. The operons ars1 and ars2 are located some distance from each other in the bacterial chromosome, but they are both composed of genes encoding a regulatory protein (arsR), an arsenite permease (arsB), and an arsenate reductase (arsC); operon ars1 contains an additional arsenate reductase gene (arsC1') located immediately downstream from arsC1. Additional arsenite permease and arsenate reductase genes (arsB3 and arsC4) scattered on the chromosome were also identified. The involvement of ars operons in arsenic resistance in C. glutamicum was confirmed by gene disruption experiments of the three arsenite permease genes present in its genome. Wild-type and arsB3 insertional mutant C. glutamicum strains were able to grow with up to 12 mM arsenite, whereas arsB1 and arsB2 C. glutamicum insertional mutants were resistant to 4 mM and 9 mM arsenite, respectively. The double arsB1-arsB2 insertional mutant was resistant to only 0.4 mM arsenite and 10 mM arsenate. Gene amplification assays of operons ars1 and ars2 in C. glutamicum revealed that the recombinant strains containing the ars1 operon were resistant to up to 60 mM arsenite, this being one of the highest levels of bacterial resistance to arsenite so far described, whereas recombinant strains containing operon ars2 were resistant to only 20 mM arsenite. Northern blot and reverse transcription-PCR analysis confirmed the presence of transcripts for all the ars genes, the expression of arsB3 and arsC4 being constitutive, and the expression of arsR1, arsB1, arsC1, arsC1', arsR2, arsB2, and arsC2 being inducible by arsenite.

摘要

谷氨酸棒杆菌能够在含有高达12 mM亚砷酸盐和500 mM砷酸盐的培养基中生长,是迄今为止所描述的最耐砷的微生物之一。在谷氨酸棒杆菌的全基因组序列中已鉴定出两个与砷酸盐和亚砷酸盐抗性有关的操纵子(ars1和ars2)。操纵子ars1和ars2在细菌染色体上彼此相距一定距离,但它们均由编码调节蛋白(arsR)、亚砷酸盐通透酶(arsB)和砷酸盐还原酶(arsC)的基因组成;操纵子ars1包含一个额外的砷酸盐还原酶基因(arsC1'),位于arsC1的紧邻下游。还鉴定出了散布在染色体上的其他亚砷酸盐通透酶和砷酸盐还原酶基因(arsB3和arsC4)。通过对其基因组中存在的三个亚砷酸盐通透酶基因进行基因破坏实验,证实了ars操纵子在谷氨酸棒杆菌抗砷性中的作用。野生型和arsB3插入突变型谷氨酸棒杆菌菌株能够在高达12 mM亚砷酸盐的环境中生长,而arsB1和arsB2谷氨酸棒杆菌插入突变体分别对4 mM和9 mM亚砷酸盐具有抗性。arsB1 - arsB2双插入突变体仅对0.4 mM亚砷酸盐和10 mM砷酸盐具有抗性。对谷氨酸棒杆菌中ars1和ars2操纵子的基因扩增分析表明,含有ars1操纵子的重组菌株对高达60 mM亚砷酸盐具有抗性,这是迄今为止所描述的细菌对亚砷酸盐的最高抗性水平之一,而含有ars2操纵子的重组菌株仅对20 mM亚砷酸盐具有抗性。Northern印迹和逆转录 - PCR分析证实了所有ars基因转录本的存在,arsB3和arsC4的表达是组成型的,而arsR1、arsB1、arsC1、arsC1'、arsR2、arsB2和arsC2的表达可被亚砷酸盐诱导。

相似文献

1
Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
Appl Environ Microbiol. 2005 Oct;71(10):6206-15. doi: 10.1128/AEM.71.10.6206-6215.2005.
3
Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.
Mol Microbiol. 2011 Nov;82(4):998-1014. doi: 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27.
4
Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3.
Biochem Biophys Res Commun. 2001 Feb 9;280(5):1393-401. doi: 10.1006/bbrc.2001.4287.
6
Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
J Bacteriol. 1992 Jun;174(11):3684-94. doi: 10.1128/jb.174.11.3684-3694.1992.
7
Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
Appl Microbiol Biotechnol. 2009 Jun;83(4):715-25. doi: 10.1007/s00253-009-1929-4. Epub 2009 Mar 13.
8
Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400.
World J Microbiol Biotechnol. 2018 Sep 10;34(10):142. doi: 10.1007/s11274-018-2526-4.
10
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.
Adv Appl Microbiol. 2017;99:103-137. doi: 10.1016/bs.aambs.2017.01.001. Epub 2017 Mar 6.

引用本文的文献

1
Whole-cell bioreporter technology: a promising approach for environmental risk assessment of As contamination in soil.
Front Microbiol. 2024 Nov 21;15:1494872. doi: 10.3389/fmicb.2024.1494872. eCollection 2024.
2
The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview.
Heliyon. 2024 Aug 22;10(17):e36314. doi: 10.1016/j.heliyon.2024.e36314. eCollection 2024 Sep 15.
3
Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation.
World J Microbiol Biotechnol. 2024 May 6;40(6):192. doi: 10.1007/s11274-024-04001-2.
4
Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation.
Folia Microbiol (Praha). 2023 Aug;68(4):507-535. doi: 10.1007/s12223-023-01068-6. Epub 2023 Jun 16.
5
Structural and functional mapping of gene cluster in DR1.
Comput Struct Biotechnol J. 2022 Dec 11;21:519-534. doi: 10.1016/j.csbj.2022.12.015. eCollection 2023.
6
Genomic Insight of FL18 Isolated From an Arsenic-Rich Hot Spring.
Front Microbiol. 2021 Apr 8;12:639697. doi: 10.3389/fmicb.2021.639697. eCollection 2021.
7
Introducing the ArsR-Regulated Arsenic Stimulon.
Front Microbiol. 2021 Mar 3;12:630562. doi: 10.3389/fmicb.2021.630562. eCollection 2021.
8
Mobilizable antibiotic resistance genes are present in dust microbial communities.
PLoS Pathog. 2020 Jan 23;16(1):e1008211. doi: 10.1371/journal.ppat.1008211. eCollection 2020 Jan.
9
Identification of A Novel Arsenic Resistance Transposon Nested in A Mercury Resistance Transposon of sp. MB24.
Microorganisms. 2019 Nov 16;7(11):566. doi: 10.3390/microorganisms7110566.
10
Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China.
Front Microbiol. 2019 Aug 20;10:1916. doi: 10.3389/fmicb.2019.01916. eCollection 2019.

本文引用的文献

3
Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26.
J Bacteriol. 2004 Mar;186(6):1614-9. doi: 10.1128/JB.186.6.1614-1619.2004.
4
Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis.
Environ Microbiol. 2003 Dec;5(12):1242-56. doi: 10.1111/j.1462-2920.2003.00463.x.
5
Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803.
J Bacteriol. 2003 Sep;185(18):5363-71. doi: 10.1128/JB.185.18.5363-5371.2003.
6
Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics.
J Biotechnol. 2003 Sep 4;104(1-3):27-40. doi: 10.1016/s0168-1656(03)00157-3.
10
The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein.
Microbiology (Reading). 2002 Dec;148(Pt 12):3983-3992. doi: 10.1099/00221287-148-12-3983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验