Suppr超能文献

从随机刺激中分离出与皮质复杂细胞相关的视觉特征。

Isolation of relevant visual features from random stimuli for cortical complex cells.

作者信息

Touryan Jon, Lau Brian, Dan Yang

机构信息

Group in Vision Science, University of California, Berkeley, California 94720, USA.

出版信息

J Neurosci. 2002 Dec 15;22(24):10811-8. doi: 10.1523/JNEUROSCI.22-24-10811.2002.

Abstract

A crucial step in understanding the function of a neural circuit in visual processing is to know what stimulus features are represented in the spiking activity of the neurons. For neurons with complex, nonlinear response properties, characterization of feature representation requires measurement of their responses to a large ensemble of visual stimuli and an analysis technique that allows identification of relevant features in the stimuli. In the present study, we recorded the responses of complex cells in the primary visual cortex of the cat to spatiotemporal random-bar stimuli and applied spike-triggered correlation analysis of the stimulus ensemble. For each complex cell, we were able to isolate a small number of relevant features from a large number of null features in the random-bar stimuli. Using these features as visual stimuli, we found that each relevant feature excited the neuron effectively in isolation and contributed to the response additively when combined with other features. In contrast, the null features evoked little or no response in isolation and divisively suppressed the responses to relevant features. Thus, for each cortical complex cell, visual inputs can be decomposed into two distinct types of features (relevant and null), and additive and divisive interactions between these features may constitute the basic operations in visual cortical processing.

摘要

理解神经回路在视觉处理中功能的关键一步是要知道神经元的放电活动中表征了哪些刺激特征。对于具有复杂非线性响应特性的神经元,特征表征的刻画需要测量它们对大量视觉刺激的响应以及一种能够识别刺激中相关特征的分析技术。在本研究中,我们记录了猫初级视觉皮层中复杂细胞对时空随机条形刺激的响应,并对刺激集合应用了触发尖峰相关性分析。对于每个复杂细胞,我们能够从随机条形刺激中的大量无效特征中分离出少量相关特征。使用这些特征作为视觉刺激,我们发现每个相关特征单独作用时能有效激发神经元,与其他特征组合时则以相加的方式对响应有贡献。相比之下,无效特征单独作用时几乎不引起响应或根本不引起响应,并且以相减的方式抑制对相关特征的响应。因此,对于每个皮层复杂细胞,视觉输入可以分解为两种不同类型的特征(相关特征和无效特征),并且这些特征之间的相加和相减相互作用可能构成视觉皮层处理中的基本操作。

相似文献

1
Isolation of relevant visual features from random stimuli for cortical complex cells.
J Neurosci. 2002 Dec 15;22(24):10811-8. doi: 10.1523/JNEUROSCI.22-24-10811.2002.
2
Computational subunits of visual cortical neurons revealed by artificial neural networks.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8974-9. doi: 10.1073/pnas.122173799. Epub 2002 Jun 11.
3
Stimulus-dependent oscillations in the cat visual cortex: differences between bar and grating stimuli.
Brain Res. 1996 Aug 26;731(1-2):91-100. doi: 10.1016/0006-8993(96)00468-4.
4
Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
J Neurophysiol. 1997 Nov;78(5):2772-89. doi: 10.1152/jn.1997.78.5.2772.
6
Spatiotemporal elements of macaque v1 receptive fields.
Neuron. 2005 Jun 16;46(6):945-56. doi: 10.1016/j.neuron.2005.05.021.
7
Cortical sensitivity to visual features in natural scenes.
PLoS Biol. 2005 Oct;3(10):e342. doi: 10.1371/journal.pbio.0030342. Epub 2005 Sep 27.
8
Cortical response field dynamics in cat visual cortex.
Cereb Cortex. 2007 Dec;17(12):2866-77. doi: 10.1093/cercor/bhm019. Epub 2007 Mar 29.
9
How are complex cell properties adapted to the statistics of natural stimuli?
J Neurophysiol. 2004 Jan;91(1):206-12. doi: 10.1152/jn.00149.2003. Epub 2003 Aug 6.
10
Processing of complex stimuli and natural scenes in the visual cortex.
Curr Opin Neurobiol. 2004 Aug;14(4):468-73. doi: 10.1016/j.conb.2004.06.002.

引用本文的文献

2
Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.
J Comput Neurosci. 2025 Mar;53(1):61-98. doi: 10.1007/s10827-024-00888-w. Epub 2025 Jan 29.
3
Cortical direction selectivity increases from the input to the output layers of visual cortex.
PLoS Biol. 2025 Jan 8;23(1):e3002947. doi: 10.1371/journal.pbio.3002947. eCollection 2025 Jan.
4
Feature selectivity and invariance in marsupial primary visual cortex.
J Physiol. 2025 Jan;603(2):423-445. doi: 10.1113/JP285757. Epub 2024 Dec 3.
5
Receptive-field nonlinearities in primary auditory cortex: a comparative perspective.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae364.
6
Model-based characterization of the selectivity of neurons in primary visual cortex.
J Neurophysiol. 2022 Aug 1;128(2):350-363. doi: 10.1152/jn.00416.2021. Epub 2022 Jun 29.
8
Coding of chromatic spatial contrast by macaque V1 neurons.
Elife. 2022 Feb 11;11:e68133. doi: 10.7554/eLife.68133.
9
Primary visual cortex straightens natural video trajectories.
Nat Commun. 2021 Oct 13;12(1):5982. doi: 10.1038/s41467-021-25939-z.
10
Normative theory of visual receptive fields.
Heliyon. 2021 Jan 21;7(1):e05897. doi: 10.1016/j.heliyon.2021.e05897. eCollection 2021 Jan.

本文引用的文献

1
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
2
Computational subunits of visual cortical neurons revealed by artificial neural networks.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8974-9. doi: 10.1073/pnas.122173799. Epub 2002 Jun 11.
3
Analysis of sensory coding with complex stimuli.
Curr Opin Neurobiol. 2001 Aug;11(4):443-8. doi: 10.1016/s0959-4388(00)00232-4.
4
Natural signal statistics and sensory gain control.
Nat Neurosci. 2001 Aug;4(8):819-25. doi: 10.1038/90526.
5
Suppression outside the classical cortical receptive field.
Vis Neurosci. 2000 May-Jun;17(3):369-79. doi: 10.1017/s0952523800173055.
6
Adaptive rescaling maximizes information transmission.
Neuron. 2000 Jun;26(3):695-702. doi: 10.1016/s0896-6273(00)81205-2.
7
Neural mechanisms for processing binocular information I. Simple cells.
J Neurophysiol. 1999 Aug;82(2):891-908. doi: 10.1152/jn.1999.82.2.891.
10
The use of m-sequences in the analysis of visual neurons: linear receptive field properties.
Vis Neurosci. 1997 Nov-Dec;14(6):1015-27. doi: 10.1017/s0952523800011743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验