Lee Jisue, Wu Chun-Fang
Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
J Neurosci. 2002 Dec 15;22(24):11065-79. doi: 10.1523/JNEUROSCI.22-24-11065.2002.
Drosophila bang-sensitive mutants display a remarkable stereotyped behavioral sequence during mechanical disturbances. This seizure repertoire consists of initial and delayed bouts of spasm interposed with paralysis and followed by recovery of activity and a period of refractoriness to further stimulation. Electroconvulsive stimuli across the brain induced a similar seizure behavior in tethered flies, in which corresponding electrophysiological events could be readily recorded in indirect flight muscles [dorsal longitudinal muscles (DLMs)] of the giant fiber (GF) pathway. The DLM physiological repertoire consisted of initial and delayed discharges (IDs and DDs), a response failure and recovery, followed by a refractory period. Interestingly, wild-type flies also displayed the same electroconvulsive repertoire, albeit inducible only at higher stimulus intensities and with briefer expression. The DLM repertoire presumably originated from activities of distinct neural circuits subserving normal function and reflected the general sequence of excitation and depression of the nervous system as a whole, as shown by simultaneous recordings along the different body axes. The well characterized GF pathway facilitated localization of circuits responsible for response failure and ID and DD motor patterns by surgical manipulations, recording-stimulating site analysis, and genetic mosaic studies. A flight pattern generator is most likely the major contributor to shaping the DD pattern, with modifications by active integration of individual motor neurons and associated interneurons. The robust electroconvulsive repertoire of DLMs provides a convenient window for further genetic analysis of the interacting neural mechanisms underlying a stereotyped action pattern in Drosophila, which shows striking parallels with aspects of seizure in mammalian species.
果蝇对撞击敏感的突变体在受到机械干扰时会表现出一种显著的刻板行为序列。这种癫痫发作模式包括最初的和延迟的痉挛发作,中间夹杂着麻痹,随后是活动恢复以及对进一步刺激的不应期。对束缚状态下的果蝇施加全脑电惊厥刺激会诱发类似的癫痫行为,在此过程中,巨纤维(GF)通路的间接飞行肌[背纵肌(DLM)]中相应的电生理事件能够很容易地被记录下来。DLM的生理模式包括最初的和延迟的放电(ID和DD)、反应失败和恢复,随后是不应期。有趣的是,野生型果蝇也表现出相同的电惊厥模式,尽管只有在更高的刺激强度下且表达时间更短时才会诱发。DLM模式大概源自于服务于正常功能的不同神经回路的活动,并且反映了整个神经系统兴奋和抑制的一般序列,这一点通过沿着不同身体轴的同步记录得以体现。特征明确的GF通路通过手术操作、记录 - 刺激位点分析以及基因嵌合体研究,有助于定位负责反应失败以及ID和DD运动模式的神经回路。飞行模式发生器很可能是塑造DD模式的主要因素,同时各个运动神经元和相关中间神经元的主动整合也会对其进行调整。DLM强大的电惊厥模式为进一步对果蝇中刻板动作模式背后相互作用的神经机制进行遗传分析提供了一个便利的窗口,该模式与哺乳动物癫痫的某些方面有着显著的相似之处。