Ehrhardt Erica, Whitehead Samuel C, Namiki Shigehiro, Minegishi Ryo, Siwanowicz Igor, Feng Kai, Otsuna Hideo, Meissner Geoffrey W, Stern David, Truman Jim, Shepherd David, Dickinson Michael H, Ito Kei, Dickson Barry J, Cohen Itai, Card Gwyneth M, Korff Wyatt
Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA.
Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany.
bioRxiv. 2025 Feb 20:2023.05.31.542897. doi: 10.1101/2023.05.31.542897.
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.
为了执行大多数行为,动物必须将大脑中高阶处理中心发出的指令发送到位于与大脑不同的神经节中的运动前电路,例如哺乳动物的脊髓或昆虫的腹神经索。这些电路如何在功能上组织起来以产生动物行为的巨大多样性仍不清楚。揭示运动前电路组织的重要第一步是识别其组成细胞类型,并创建工具来高度特异性地监测和操纵这些细胞类型以评估其功能。这在易于处理的果蝇腹神经索中是可行的。为了生成这样一个工具包,我们使用了一种组合遗传技术(split-GAL4)来创建195个稀疏转基因驱动系,靶向腹神经索中的196种个体细胞类型。这些包括翅膀和平衡棒运动神经元、调节神经元和中间神经元。通过结合行为、发育和解剖学分析,我们系统地表征了我们收集的靶向细胞类型。此外,我们确定了这个收集中的细胞与最近的腹神经索连接组数据集之间的对应关系。综上所述,这里展示的资源和结果形成了一个强大的工具包,用于未来对运动前电路的神经元回路和连接性进行研究,同时将它们与行为输出联系起来。