Anderson Charles F, Felitsky Daniel J, Hong Jiang, Record M Thomas
Department of Chemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI 53706, USA.
Biophys Chem. 2002 Dec 10;101-102:497-511. doi: 10.1016/s0301-4622(02)00159-x.
In solutions consisting of solvent water (component '1') and two solute components ('2' and '3'), various thermodynamic effects of differences between solute-solute and solute-solvent interactions are quantitatively characterized by state functions commonly called 'preferential interaction coefficients': gamma(mu(1),mu(3)) triple bond (delta(m3)/delta(m2))(T,mu(1),mu(3)) and gamma(mu(k)) triple bond (delta(m3)/delta(m2))(T,P,mu(k)), where k = 1,2 or 3. These different derivatives are not all directly accessible to experimental determination, nor are they entirely equivalent for analyses and interpretations of thermodynamic and molecular effects of preferential interactions. Consequently, various practical and theoretical considerations arise when, for a given system, different kinds of preferential interaction coefficients have significantly different numerical values. Previously we derived the exact relationship linking all three coefficients of the type gamma(mu(k), and hence identified the physical origins of the differences between gamma(mu(1)) and gamma(mu(3)) that have been experimentally determined for each of various common biochemical solutes interacting with a protein [J. Phys. Chem. B, 106 (2002) 418-433]. Continuing our investigation of exact thermodynamic linkages among different types of preferential interaction coefficients, we present here a generalized derivation of the relationship linking gamma(mu(1),mu(3)), gamma(mu(3)) and gamma(mu(1)), with no restrictions on m(2), m(3) or any physical characteristic of either solute component (such as partial molar volume). Hence, we show that (gamma(mu(1),mu(3)) - gamma(mu(3))) is related directly to (gamma(mu(3)) - gamma(mu(1))), for which the physical determinants have been considered in detail previously, and to a factor dependent on the ratio of the partial molar volumes V3/V1. Our generalized expression also provides a basis for calculating gamma(mu(1),mu(3)), even in situations where preferential interactions could not be investigated by equilibrium dialysis. To demonstrate this applicability, we analyze isopiestic distillation data for aqueous solutions containing urea and NaCl, two small solute components that cannot be selectively dialyzed.
在由溶剂水(组分“1”)和两种溶质组分(“2”和“3”)组成的溶液中,溶质 - 溶质和溶质 - 溶剂相互作用差异的各种热力学效应通过通常称为“优先相互作用系数”的状态函数进行定量表征:γ(μ₁,μ₃) ≡ (∂m₃/∂m₂)(T,μ₁,μ₃) 和 γ(μₖ) ≡ (∂m₃/∂m₂)(T,P,μₖ),其中 k = 1,2 或 3。这些不同的导数并非都能直接通过实验测定,对于优先相互作用的热力学和分子效应的分析与解释而言,它们也并非完全等效。因此,当对于给定系统,不同种类的优先相互作用系数具有显著不同的数值时,就会出现各种实际和理论上的考虑因素。此前我们推导出了将所有三种类型为γ(μₖ)的系数联系起来的精确关系,从而确定了γ(μ₁)和γ(μ₃)之间差异的物理根源,这些差异已针对与蛋白质相互作用的各种常见生化溶质中的每一种通过实验测定 [《物理化学杂志B》,106 (2002) 418 - 433]。继续我们对不同类型优先相互作用系数之间精确热力学联系的研究,我们在此给出γ(μ₁,μ₃)、γ(μ₃)和γ(μ₁)之间关系的广义推导,对m₂、m₃或任何一种溶质组分的物理特性(如偏摩尔体积)不做限制。因此,我们表明(γ(μ₁,μ₃) - γ(μ₃))与(γ(μ₃) - γ(μ₁))直接相关,其物理决定因素此前已详细考虑过,并且与一个取决于偏摩尔体积比V₃/V₁的因子相关。我们的广义表达式还为计算γ(μ₁,μ₃)提供了基础,即使在无法通过平衡透析研究优先相互作用的情况下。为了证明这种适用性,我们分析了含有尿素和氯化钠的水溶液的等压蒸馏数据,尿素和氯化钠是两种无法选择性透析的小分子溶质组分。