Suppr超能文献

氧化三甲胺对尿素诱导的蛋白质变性的抑制作用:原子分辨率下的化学伴侣分子

Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution.

作者信息

Bennion Brian J, Daggett Valerie

机构信息

Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6433-8. doi: 10.1073/pnas.0308633101. Epub 2004 Apr 19.

Abstract

Proteins are very sensitive to their solvent environments. Urea is a common chemical denaturant of proteins, yet some animals contain high concentrations of urea. These animals have evolved an interesting mechanism to counteract the effects of urea by using trimethylamine N-oxide (TMAO). The molecular basis for the ability of TMAO to act as a chemical chaperone remains unknown. Here, we describe molecular dynamics simulations of a small globular protein, chymotrypsin inhibitor 2, in 8 M urea and 4 M TMAO/8 M urea solutions, in addition to other control simulations, to investigate this effect at the atomic level. In 8 M urea, the protein unfolds, and urea acts in both a direct and indirect manner to achieve this effect. In contrast, introduction of 4 M TMAO counteracts the effect of urea and the protein remains well structured. TMAO makes few direct interactions with the protein. Instead, it prevents unfolding of the protein by structuring the solvent. In particular, TMAO orders the solvent and discourages it from competing with intraprotein H bonds and breaking up the hydrophobic core of the protein.

摘要

蛋白质对其溶剂环境非常敏感。尿素是一种常见的蛋白质化学变性剂,但一些动物体内含有高浓度的尿素。这些动物进化出了一种有趣的机制,通过使用氧化三甲胺(TMAO)来抵消尿素的影响。TMAO作为化学伴侣发挥作用的分子基础仍然未知。在这里,除了其他对照模拟外,我们还描述了一种小分子球状蛋白——胰凝乳蛋白酶抑制剂2在8M尿素和4M TMAO/8M尿素溶液中的分子动力学模拟,以在原子水平上研究这种效应。在8M尿素中,蛋白质展开,尿素通过直接和间接方式实现这种效应。相比之下,加入4M TMAO可抵消尿素的作用,蛋白质保持良好的结构。TMAO与蛋白质几乎没有直接相互作用。相反,它通过使溶剂结构化来防止蛋白质展开。特别是,TMAO使溶剂有序化,并抑制其与蛋白质内部氢键竞争以及破坏蛋白质的疏水核心。

相似文献

1
Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6433-8. doi: 10.1073/pnas.0308633101. Epub 2004 Apr 19.
2
Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
J Phys Chem B. 2013 May 9;117(18):5691-704. doi: 10.1021/jp401750v. Epub 2013 Apr 29.
3
Counteraction of urea by trimethylamine N-oxide is due to direct interaction.
Biophys J. 2009 Nov 4;97(9):2559-66. doi: 10.1016/j.bpj.2009.08.017.
5
Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
J Am Chem Soc. 2007 Apr 11;129(14):4476-82. doi: 10.1021/ja0685506. Epub 2007 Mar 21.
6
Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
J Phys Chem Lett. 2015 Feb 19;6(4):581-5. doi: 10.1021/jz502634k. Epub 2015 Jan 28.
7
The influence of urea and trimethylamine-N-oxide on hydrophobic interactions.
J Phys Chem B. 2007 Jul 19;111(28):7932-3. doi: 10.1021/jp0733668. Epub 2007 Jun 20.
8
Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction.
J Am Chem Soc. 2018 Jan 10;140(1):483-492. doi: 10.1021/jacs.7b11695. Epub 2017 Dec 22.
9
Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state.
Arch Biochem Biophys. 2007 Oct 1;466(1):106-15. doi: 10.1016/j.abb.2007.07.004. Epub 2007 Jul 14.
10
How does trimethylamine N-oxide counteract the denaturing activity of urea?
Phys Chem Chem Phys. 2011 Oct 21;13(39):17689-95. doi: 10.1039/c1cp22176k. Epub 2011 Sep 6.

引用本文的文献

2
Improvement in protein HSQC spectra from addition of betaine.
J Biomol NMR. 2025 Sep;79(3):155-162. doi: 10.1007/s10858-025-00463-0. Epub 2025 Mar 10.
5
Solvent accessible surface area-assessed molecular basis of osmolyte-induced protein stability.
RSC Adv. 2024 Aug 9;14(34):25031-25041. doi: 10.1039/d4ra02576h. eCollection 2024 Aug 5.
7
Myosin light chain of shark fast skeletal muscle exhibits intrinsic urea-resistibility.
Sci Rep. 2023 Mar 25;13(1):4909. doi: 10.1038/s41598-023-32228-w.
8
Electronic fluctuation difference between trimethylamine N-oxide and tert-butyl alcohol in water.
Sci Rep. 2022 Nov 12;12(1):19417. doi: 10.1038/s41598-022-24049-0.
9
In silico studies of the human IAPP in the presence of osmolytes.
J Mol Model. 2022 Jun 14;28(7):188. doi: 10.1007/s00894-022-05180-1.

本文引用的文献

1
Water and urea interactions with the native and unfolded forms of a beta-barrel protein.
Protein Sci. 2003 Dec;12(12):2768-81. doi: 10.1110/ps.03262603.
2
The molecular basis for the chemical denaturation of proteins by urea.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5142-7. doi: 10.1073/pnas.0930122100. Epub 2003 Apr 17.
3
A microscopic view of peptide and protein solvation.
Biophys Chem. 2003;100(1-3):221-37. doi: 10.1016/s0301-4622(02)00283-1.
6
Thermodynamic binding and site occupancy in the light of the Schellman exchange concept.
Biophys Chem. 2002 Dec 10;101-102:99-111. doi: 10.1016/s0301-4622(02)00188-6.
7
Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants.
Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):667-76. doi: 10.1016/s1095-6433(02)00182-4.
8
Increasing temperature accelerates protein unfolding without changing the pathway of unfolding.
J Mol Biol. 2002 Sep 6;322(1):189-203. doi: 10.1016/s0022-2836(02)00672-1.
9
Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9721-6. doi: 10.1073/pnas.122225399. Epub 2002 Jul 3.
10
Fifty years of solvent denaturation.
Biophys Chem. 2002 May 2;96(2-3):91-101. doi: 10.1016/s0301-4622(02)00009-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验