Courtenay E S, Capp M W, Anderson C F, Record M T
Departments of Bacteriology, Chemistry, and Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison Wisconsin 53706, USA.
Biochemistry. 2000 Apr 18;39(15):4455-71. doi: 10.1021/bi992887l.
To interpret or to predict the responses of biopolymer processes in vivo and in vitro to changes in solute concentration and to coupled changes in water activity (osmotic stress), a quantitative understanding of the thermodynamic consequences of interactions of solutes and water with biopolymer surfaces is required. To this end, we report isoosmolal preferential interaction coefficients (Gamma(mu1) determined by vapor pressure osmometry (VPO) over a wide range of concentrations for interactions between native bovine serum albumin (BSA) and six small solutes. These include Escherichia coli cytoplasmic osmolytes [potassium glutamate (K(+)Glu(-)), trehalose], E. coli osmoprotectants (proline, glycine betaine), and also glycerol and trimethylamine N-oxide (TMAO). For all six solutes, Gamma(mu1) and the corresponding dialysis preferential interaction coefficient Gamma(mu1),(mu3) (both calculated from the VPO data) are negative; Gamma(mu1), (mu3) is proportional to bulk solute molality (m(bulk)3) at least up to 1 m (molal). Negative values of Gamma(mu1),(mu3) indicate preferential exclusion of these solutes from a BSA solution at dialysis equilibrium and correspond to local concentrations of these solutes in the vicinity of BSA which are lower than their bulk concentrations. Of the solutes investigated, betaine is the most excluded (Gamma(mu1),(mu3)/m(bulk)3 = -49 +/- 1 m(-1)); glycerol is the least excluded (Gamma(mu1),(mu3)/m(bulk)3 = -10 +/- 1 m(-1)). Between these extremes, the magnitude of Gamma(mu1),(mu3)/m(bulk)3 decreases in the order glycine betaine >> proline >TMAO > trehalose approximately K(+)Glu(-) > glycerol. The order of exclusion of E. coli osmolytes from BSA surface correlates with their effectiveness as osmoprotectants, which increase the growth rate of E. coli at high external osmolality. For the most excluded solute (betaine), Gamma(mu1),(mu3) provides a minimum estimate of the hydration of native BSA of approximately 2.8 x 10(3) H(2)O/BSA, which corresponds to slightly less than a monolayer (estimated to be approximately 3.2 x 10(3) H(2)O). Consequently, of the solutes investigated here, only betaine might be suitable for use in osmotic stress experiments in vitro as a direct probe to quantify changes in hydration of protein surface in biopolymer processes. More generally, however, our results and analysis lead to the proposal that any of these solutes can be used to quantify changes in water-accessible surface area (ASA) in biopolymer processes once preferential interactions of the solute with biopolymer surface are properly taken into account.
为了解释或预测生物聚合物在体内和体外过程中对溶质浓度变化以及水活度耦合变化(渗透胁迫)的响应,需要对溶质和水与生物聚合物表面相互作用的热力学结果有定量的认识。为此,我们报告了通过蒸气压渗透法(VPO)测定的等渗优先相互作用系数(Gamma(mu1)),该系数涵盖了天然牛血清白蛋白(BSA)与六种小溶质相互作用的广泛浓度范围。这些溶质包括大肠杆菌细胞质渗透溶质[谷氨酸钾(K(+)Glu(-))、海藻糖]、大肠杆菌渗透保护剂(脯氨酸、甘氨酸甜菜碱),以及甘油和三甲胺 N - 氧化物(TMAO)。对于所有六种溶质,Gamma(mu1)和相应的透析优先相互作用系数Gamma(mu1),(mu3)(均根据VPO数据计算)均为负值;Gamma(mu1),(mu3)与本体溶质质量摩尔浓度(m(bulk)3)至少在1 m(质量摩尔浓度)范围内成正比。Gamma(mu1),(mu3)的负值表明在透析平衡时这些溶质优先从BSA溶液中被排除,并且对应于这些溶质在BSA附近的局部浓度低于其本体浓度。在所研究的溶质中,甜菜碱被排除的程度最大(Gamma(mu1),(mu3)/m(bulk)3 = -49 +/- 1 m(-1));甘油被排除的程度最小(Gamma(mu1),(mu3)/m(bulk)3 = -10 +/- 1 m(-1))。在这两个极端之间,Gamma(mu1),(mu3)/m(bulk)3的大小按以下顺序减小:甘氨酸甜菜碱 >> 脯氨酸 > TMAO > 海藻糖 ≈ K(+)Glu(-) > 甘油。大肠杆菌渗透溶质从BSA表面被排除的顺序与其作为渗透保护剂的有效性相关,渗透保护剂可提高大肠杆菌在高外部渗透压下的生长速率。对于被排除程度最大的溶质(甜菜碱),Gamma(mu1),(mu3)提供了天然BSA水合作用的最小估计值,约为2.8 x 10(3) H(2)O/BSA,这略小于一个单分子层(估计约为3.2 x 10(3) H(2)O)。因此,在这里研究的溶质中,只有甜菜碱可能适用于体外渗透胁迫实验,作为定量生物聚合物过程中蛋白质表面水合作用变化的直接探针。然而,更一般地说,我们的结果和分析表明,一旦适当考虑溶质与生物聚合物表面的优先相互作用,这些溶质中的任何一种都可用于量化生物聚合物过程中可及水表面积(ASA)的变化。