Coe Seth, Woo Wing-Keung, Bawendi Moungi, Bulović Vladimir
Laboratory of Organic Optoelectronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA.
Nature. 2002;420(6917):800-3. doi: 10.1038/nature01217.
The integration of organic and inorganic materials at the nanometre scale into hybrid optoelectronic structures enables active devices that combine the diversity of organic materials with the high-performance electronic and optical properties of inorganic nanocrystals. The optimization of such hybrid devices ultimately depends upon the precise positioning of the functionally distinct materials. Previous studies have already emphasized that this is a challenge, owing to the lack of well-developed nanometre-scale fabrication techniques. Here we demonstrate a hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs). To isolate the luminescence processes from charge conduction, we fabricate a quantum-dot LED (QD-LED) that contains only a single monolayer of QDs, sandwiched between two organic thin films. This is achieved by a method that uses material phase segregation between the QD aliphatic capping groups and the aromatic organic materials. In our devices, where QDs function exclusively as lumophores, we observe a 25-fold improvement in luminescence efficiency (1.6 cd A(-1) at 2,000 cd m(-2)) over the best previous QD-LED results. The reproducibility and precision of our phase-segregation approach suggests that this technique could be widely applicable to the fabrication of other hybrid organic/inorganic devices.
将有机和无机材料在纳米尺度上整合到混合光电器件结构中,能够制造出结合了有机材料多样性与无机纳米晶体高性能电子和光学特性的有源器件。此类混合器件的优化最终取决于功能不同的材料的精确定位。先前的研究已经强调,由于缺乏成熟的纳米尺度制造技术,这是一项挑战。在此,我们展示了一种混合发光二极管(LED),它结合了有机材料易于加工的特性与胶体量子点(QD)窄带、高效的发光特性。为了将发光过程与电荷传导隔离开来,我们制造了一种量子点发光二极管(QD-LED),其中仅包含单个单层量子点,夹在两个有机薄膜之间。这是通过一种利用量子点脂肪族封端基团与芳香族有机材料之间的材料相分离的方法实现的。在我们的器件中,量子点仅作为发光体起作用,我们观察到发光效率(在2000 cd m⁻²时为1.6 cd A⁻¹)比之前最好的量子点发光二极管结果提高了25倍。我们的相分离方法的可重复性和精确性表明,该技术可广泛应用于制造其他有机/无机混合器件。