Ayton Gary, Voth Gregory A
Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 S. 1400 E, Salt Lake City, UT 84112-0850, USA.
Biophys J. 2002 Dec;83(6):3357-70. doi: 10.1016/S0006-3495(02)75336-8.
A lipid bilayer is modeled using a mesoscopic model designed to bridge atomistic bilayer simulations with macro-scale continuum-level simulation. Key material properties obtained from detailed atomistic-level simulations are used to parameterize the meso-scale model. The fundamental length and time scale of the meso-scale simulation are at least an order of magnitude beyond that used at the atomistic level. Dissipative particle dynamics cast in a new membrane formulation provides the simulation methodology. A meso-scale representation of a dimyristoylphosphatidylcholine membrane is examined in the high and low surface tension regimes. At high surface tensions, the calculated modulus is found to be slightly less than the atomistically determined value. This result agrees with the theoretical prediction that high-strain thermal undulations still persist, which have the effect of reducing the value of the atomistically determined modulus. Zero surface tension simulations indicate the presence of strong thermal undulatory modes, whereas the undulation spectrum and the calculated bending modulus are in excellent agreement with theoretical predictions and experiment.
脂质双层使用一种介观模型进行建模,该模型旨在将原子级双层模拟与宏观尺度的连续介质级模拟联系起来。从详细的原子级模拟中获得的关键材料特性用于对介观尺度模型进行参数化。介观尺度模拟的基本长度和时间尺度比原子级使用的至少大一个数量级。在一种新的膜公式中进行的耗散粒子动力学提供了模拟方法。研究了二肉豆蔻酰磷脂酰胆碱膜在高表面张力和低表面张力状态下的介观尺度表示。在高表面张力下,发现计算出的模量略小于原子级确定的值。该结果与高应变热起伏仍然存在的理论预测一致,热起伏会降低原子级确定的模量值。零表面张力模拟表明存在强烈的热起伏模式,而起伏谱和计算出的弯曲模量与理论预测和实验结果非常吻合。