Suppr超能文献

脂质双层微观与介观模拟的桥梁搭建

Bridging microscopic and mesoscopic simulations of lipid bilayers.

作者信息

Ayton Gary, Voth Gregory A

机构信息

Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 S. 1400 E, Salt Lake City, UT 84112-0850, USA.

出版信息

Biophys J. 2002 Dec;83(6):3357-70. doi: 10.1016/S0006-3495(02)75336-8.

Abstract

A lipid bilayer is modeled using a mesoscopic model designed to bridge atomistic bilayer simulations with macro-scale continuum-level simulation. Key material properties obtained from detailed atomistic-level simulations are used to parameterize the meso-scale model. The fundamental length and time scale of the meso-scale simulation are at least an order of magnitude beyond that used at the atomistic level. Dissipative particle dynamics cast in a new membrane formulation provides the simulation methodology. A meso-scale representation of a dimyristoylphosphatidylcholine membrane is examined in the high and low surface tension regimes. At high surface tensions, the calculated modulus is found to be slightly less than the atomistically determined value. This result agrees with the theoretical prediction that high-strain thermal undulations still persist, which have the effect of reducing the value of the atomistically determined modulus. Zero surface tension simulations indicate the presence of strong thermal undulatory modes, whereas the undulation spectrum and the calculated bending modulus are in excellent agreement with theoretical predictions and experiment.

摘要

脂质双层使用一种介观模型进行建模,该模型旨在将原子级双层模拟与宏观尺度的连续介质级模拟联系起来。从详细的原子级模拟中获得的关键材料特性用于对介观尺度模型进行参数化。介观尺度模拟的基本长度和时间尺度比原子级使用的至少大一个数量级。在一种新的膜公式中进行的耗散粒子动力学提供了模拟方法。研究了二肉豆蔻酰磷脂酰胆碱膜在高表面张力和低表面张力状态下的介观尺度表示。在高表面张力下,发现计算出的模量略小于原子级确定的值。该结果与高应变热起伏仍然存在的理论预测一致,热起伏会降低原子级确定的模量值。零表面张力模拟表明存在强烈的热起伏模式,而起伏谱和计算出的弯曲模量与理论预测和实验结果非常吻合。

相似文献

1
Bridging microscopic and mesoscopic simulations of lipid bilayers.
Biophys J. 2002 Dec;83(6):3357-70. doi: 10.1016/S0006-3495(02)75336-8.
2
Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations.
J Chem Phys. 2005 Jun 22;122(24):244716. doi: 10.1063/1.1931651.
3
Mesoscopic lateral diffusion in lipid bilayers.
Biophys J. 2004 Nov;87(5):3299-311. doi: 10.1529/biophysj.104.047811. Epub 2004 Aug 31.
4
Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers.
Biophys J. 2004 Nov;87(5):3242-63. doi: 10.1529/biophysj.104.045716. Epub 2004 Sep 3.
6
8
Solid-supported lipid multilayers: structure factor and fluctuations.
Eur Phys J E Soft Matter. 2003 Oct;12(2):283-290. doi: 10.1140/epje/i2003-10063-1.
9
Influence of rigid inclusions on the bending elasticity of a lipid membrane.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051503. doi: 10.1103/PhysRevE.74.051503. Epub 2006 Nov 7.
10
Nonequilibrium patterns and shape fluctuations in reactive membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 1):051906. doi: 10.1103/PhysRevE.71.051906. Epub 2005 May 18.

引用本文的文献

3
Bottom-up Coarse-Graining: Principles and Perspectives.
J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7.
4
Synthetic biology outside the cell: linking computational tools to cell-free systems.
Front Bioeng Biotechnol. 2014 Dec 9;2:66. doi: 10.3389/fbioe.2014.00066. eCollection 2014.
5
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.
Phys Rep. 2014 Oct 1;543(1):1-60. doi: 10.1016/j.physrep.2014.05.001.
6
α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry.
J Am Chem Soc. 2014 Jul 16;136(28):9962-72. doi: 10.1021/ja5016958. Epub 2014 Jul 7.
7
Equation of state for a coarse-grained DPPC monolayer at the air/water interface.
Mol Phys. 2006 Oct 10;104(19). doi: 10.1080/00268970600935101.
8
Determining the Gaussian curvature modulus of lipid membranes in simulations.
Biophys J. 2012 Mar 21;102(6):1403-10. doi: 10.1016/j.bpj.2012.02.013. Epub 2012 Mar 20.
9
Reconstructing protein remodeled membranes in molecular detail from mesoscopic models.
Phys Chem Chem Phys. 2011 Jun 14;13(22):10430-6. doi: 10.1039/c0cp02978e. Epub 2011 Apr 18.
10
Large-scale simulations of fluctuating biological membranes.
J Chem Phys. 2010 Apr 21;132(15):154107. doi: 10.1063/1.3382349.

本文引用的文献

1
Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles.
Biophys J. 2002 Aug;83(2):1026-38. doi: 10.1016/S0006-3495(02)75228-4.
2
Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation.
Biophys J. 2002 Jul;83(1):299-308. doi: 10.1016/S0006-3495(02)75170-9.
3
Calculating the bulk modulus for a lipid bilayer with nonequilibrium molecular dynamics simulation.
Biophys J. 2002 Mar;82(3):1226-38. doi: 10.1016/S0006-3495(02)75479-9.
4
Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants.
Biophys J. 2001 Aug;81(2):725-36. doi: 10.1016/S0006-3495(01)75737-2.
6
7
Effect of chain length and unsaturation on elasticity of lipid bilayers.
Biophys J. 2000 Jul;79(1):328-39. doi: 10.1016/S0006-3495(00)76295-3.
9
Membrane simulations: bigger and better?
Curr Opin Struct Biol. 2000 Apr;10(2):174-81. doi: 10.1016/s0959-440x(00)00066-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验