Chang Rakwoo, Ayton Gary S, Voth Gregory A
Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, 84112-0850, USA.
J Chem Phys. 2005 Jun 22;122(24):244716. doi: 10.1063/1.1931651.
A multiscale method is presented to bridge between the atomistic and mesoscopic membrane systems. The atomistic model in this case is the united atom dimyristoylphosphatidylcholine membrane system, although the method is completely general. Atomistic molecular dynamics provides the expansion modulus which is used to parametrize a mesoscopic elastic membrane model. The resulting elastic membrane model, including explicit mesoscopic solvent, shows appropriate static and dynamic undulation behaviors. Large membranes of approximately 100 nm in length can then be easily simulated using the mesoscopic membrane system. The critical feedback from the mesoscopic system back down to the atomistic-scale system is accomplished by bridging the stress (or surface tension) of a small region in the mesoscopic membrane to the corresponding atomistic membrane system. Because of long length-scale modes of membranes such as undulation and buckling, the local tension responds differently from the frame tension, when subjected to external perturbations. The effect of these membrane modes is shown for the stress response of a local membrane region and therefore the atomistic membrane system. In addition, certain equilibrium static and dynamic properties of stand-alone and multiscale coupled systems are presented for several different membrane sizes. Although static properties such as two-dimensional pair-correlation function and order parameters show no noticeable discrepancy for the different systems, lipid self-diffusion and the rotational relaxation of lipid dipoles have a strong dependence on the membrane size (or long-wavelength membrane motions), which is properly modeled by the present multiscale method.
提出了一种多尺度方法,用于在原子尺度和介观尺度的膜系统之间建立联系。在这种情况下,原子模型是联合原子二肉豆蔻酰磷脂酰胆碱膜系统,尽管该方法具有完全通用性。原子分子动力学提供了用于参数化介观弹性膜模型的膨胀模量。由此产生的弹性膜模型,包括明确的介观溶剂,表现出适当的静态和动态波动行为。然后可以使用介观膜系统轻松模拟长度约为100 nm的大膜。介观系统到原子尺度系统的关键反馈是通过将介观膜中一个小区域的应力(或表面张力)与相应的原子膜系统联系起来实现的。由于膜的长尺度模式,如波动和屈曲,当受到外部扰动时,局部张力与框架张力的响应不同。展示了这些膜模式对局部膜区域以及因此对原子膜系统应力响应的影响。此外,还给出了几种不同膜尺寸的独立系统和多尺度耦合系统的某些平衡静态和动态性质。尽管诸如二维对关联函数和序参量等静态性质在不同系统中没有明显差异,但脂质自扩散和脂质偶极子的旋转弛豫强烈依赖于膜尺寸(或长波长膜运动),而本文的多尺度方法对此进行了恰当的建模。