Suppr超能文献

木糖异构酶催化的氢化物转移:机制与量子效应

Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.

作者信息

Garcia-Viloca Mireia, Alhambra Cristóbal, Truhlar Donald G, Gao Jiali

机构信息

Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA.

出版信息

J Comput Chem. 2003 Jan 30;24(2):177-90. doi: 10.1002/jcc.10154.

Abstract

We have applied molecular dynamics umbrella-sampling simulation and ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT) to calculate the reaction rate of xylose-to- xylulose isomerization catalyzed by xylose isomerase in the presence of two Mg2+ ions. The calculations include determination of the free energy of activation profile and ensemble averaging in the transmission coefficient. The potential energy function is approximated by a combined QM/MM/SVB method involving PM3 for the quantum mechanical (QM) subsystem, CHARMM22 and TIP3P for the molecular mechanical (MM) environment, and a simple valence bond (SVB) local function of two bond distances for the hydride transfer reaction. The simulation confirms the essential features of a mechanism postulated on the basis of kinetics and X-ray data by Whitlow et al. (Whitlow, M.; Howard, A. J.; Finzel, B. C.; Poulos, T. L.; Winborne, E.; Gilliland, G. L. Proteins 1991, 9, 153) and Ringe, Petsko, and coworkers (Labie, A.; Allen, K.-N.; Petsko, G. A.; Ringe, D. Biochemistry 1994, 33, 5469). This mechanism involves a rate-determining 1,2-hydride shift with prior and post proton transfers. Inclusion of quantum mechanical vibrational energy is important for computing the free energy of activation, and quantum mechanical tunneling effects are essential for computing kinetic isotope effects (KIEs). It is found that 85% of the reaction proceeds by tunneling and 15% by overbarrier events. The computed KIE for the ratio of hydride to deuteride transfer is in good agreement with the experimental results. The molecular dynamics simulations reveal that proton and hydride transfer reactions are assisted by breathing motions of the mobile Mg2+ ion in the active site, providing evidence for concerted motion of Mg2+ during the hydride transfer step.

摘要

我们应用分子动力学伞形采样模拟以及带有多维隧穿的系综平均变分过渡态理论(EA-VTST/MT)来计算在两个Mg2+离子存在的情况下木糖异构酶催化木糖向木酮糖异构化反应的速率。计算内容包括活化自由能分布的确定以及透射系数的系综平均。势能函数通过一种组合的QM/MM/SVB方法进行近似,该方法中量子力学(QM)子系统采用PM3,分子力学(MM)环境采用CHARMM22和TIP3P,氢化物转移反应采用两个键长的简单价键(SVB)局部函数。该模拟证实了Whitlow等人(Whitlow, M.; Howard, A. J.; Finzel, B. C.; Poulos, T. L.; Winborne, E.; Gilliland, G. L. Proteins 1991, 9, 153)以及Ringe、Petsko及其同事(Labie, A.; Allen, K.-N.; Petsko, G. A.; Ringe, D. Biochemistry 1994, 33, 5469)基于动力学和X射线数据所假定机制的基本特征。该机制涉及一个速率决定步骤,即先进行质子转移,然后是1,2 - 氢化物转移,最后再进行质子转移。包含量子力学振动能对于计算活化自由能很重要,而量子力学隧穿效应对于计算动力学同位素效应(KIEs)至关重要。结果发现,85%的反应通过隧穿进行,15%通过翻越势垒事件进行。计算得到的氢化物与氘化物转移比率的KIE与实验结果吻合良好。分子动力学模拟表明,质子和氢化物转移反应由活性位点中移动的Mg2+离子的呼吸运动辅助,为氢化物转移步骤中Mg2+的协同运动提供了证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验