Xiang Yun, Warshel Arieh
Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089-1062, USA.
J Phys Chem B. 2008 Jan 24;112(3):1007-15. doi: 10.1021/jp076931f. Epub 2008 Jan 1.
Reliable studies of proton transfer (PT) reactions in solution and in enzymes by combined quantum mechanical/molecular mechanics (QM/MM) approaches with an ab initio description of the quantum region present a major challenge to computational chemists. The main problem is the need for extensive computer time to evaluate the QM energy, which in turn makes it extremely challenging to perform proper configurational sampling. The present work presents a new effective way for performing such calculations by using the frozen density functional (FDFT) approach to generate diabatic surfaces that are used to generate a mapping potential that takes the system from the reactant to the product state. The resulting umbrella sampling/free energy perturbation (US/FEP) mapping is done in full analogy with the approach used in the empirical valence bond (EVB) treatment, moving from the diabatic mapping potential to the adiabatic ground state surface, while an ab initio Hamiltonian is used for the QM part. The present approach provides a particularly effective way for evaluating the free energy associated with both the substrate and the solvent motions. This allows us to obtain a free energy barrier that properly reflects the solute entropy. This advance allows one to obtain ab initio QM/MM (QM(ai)/MM) free energy surfaces for very challenging cases such as the autodissociation of water in water, proton transfer between methanol and water in water, and the effect of Mg2+ ion on such a reaction. We also consider as a benchmark the initial PT reaction in the catalytic cycle of triose phosphate isomerase and obtain excellent results without any adjustable parameters. Our results point out that the present implementation of the FDFT approach provides a very promising approach for evaluating QM(ai)/MM free energy surfaces.
采用量子力学/分子力学(QM/MM)相结合的方法,对溶液和酶中质子转移(PT)反应进行可靠的研究,并对量子区域进行从头算描述,这对计算化学家来说是一个重大挑战。主要问题在于需要大量的计算机时间来评估量子力学能量,这反过来又使得进行适当的构型采样极具挑战性。目前的工作提出了一种新的有效方法来进行此类计算,即使用冻结密度泛函(FDFT)方法生成非绝热表面,这些表面用于生成一个映射势,该势将系统从反应物状态带到产物状态。由此产生的伞形采样/自由能微扰(US/FEP)映射与经验价键(EVB)处理中使用的方法完全类似,从非绝热映射势移动到绝热基态表面,同时量子力学部分使用从头算哈密顿量。目前的方法为评估与底物和溶剂运动相关的自由能提供了一种特别有效的方式。这使我们能够获得一个能正确反映溶质熵的自由能垒。这一进展使得人们能够在极具挑战性的情况下获得从头算QM/MM(QM(ai)/MM)自由能表面,例如水中水的自解离、水中甲醇和水之间的质子转移以及Mg2+离子对这种反应的影响。我们还将磷酸丙糖异构酶催化循环中的初始PT反应作为基准进行研究,并且在没有任何可调参数的情况下获得了出色的结果。我们的结果指出,FDFT方法的当前实现为评估QM(ai)/MM自由能表面提供了一种非常有前景的方法。