Wyss Reto, Konig Peter, Verschure Paul F M J
Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology, Switzerland.
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):324-9. doi: 10.1073/pnas.0136977100. Epub 2002 Dec 26.
Mammalian visual systems are characterized by their ability to recognize stimuli invariant to various transformations. Here, we investigate the hypothesis that this ability is achieved by the temporal encoding of visual stimuli. By using a model of a cortical network, we show that this encoding is invariant to several transformations and robust with respect to stimulus variability. Furthermore, we show that the proposed model provides a rapid encoding, in accordance with recent physiological results. Taking into account properties of primary visual cortex, the application of the encoding scheme to an enhanced network demonstrates favorable scaling and high performance in a task humans excel at.
哺乳动物视觉系统的特点是能够识别在各种变换下不变的刺激。在此,我们研究这样一种假说,即这种能力是通过视觉刺激的时间编码来实现的。通过使用一个皮质网络模型,我们表明这种编码对于几种变换是不变的,并且对于刺激的变异性具有鲁棒性。此外,我们表明所提出的模型根据最近的生理学结果提供了一种快速编码。考虑到初级视觉皮层的特性,将编码方案应用于增强网络在人类擅长的一项任务中展示了良好的扩展性和高性能。