Sebastiani Daniel, Parrinello Michele
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Chemphyschem. 2002 Aug 16;3(8):675-9. doi: 10.1002/1439-7641(20020816)3:8<675::AID-CPHC675>3.0.CO;2-O.
We present a theoretical investigation of the hydrogen nuclear magnetic resonance (NMR) chemical shift and the magnetic susceptibility of normal and supercritical water using a recently developed ab initio approach in the framework of density functional perturbation theory. The results are in very good agreement with experiment. The shifts can be used to determine whether the atomic configurations, taken from a first principles simulation, give a good description of the system on a microscopic scale. In particular, the hydrogen chemical shifts are very sensitive to the character of the hydrogen bond network, which plays a crucial role in the macroscopic properties of liquid water under normal and supercritical conditions.
我们采用密度泛函微扰理论框架下最近发展的从头算方法,对正常水和超临界水的氢核磁共振(NMR)化学位移及磁化率进行了理论研究。结果与实验非常吻合。这些位移可用于确定从第一性原理模拟得到的原子构型在微观尺度上是否能很好地描述该体系。特别是,氢化学位移对氢键网络的性质非常敏感,而氢键网络在正常和超临界条件下液态水的宏观性质中起着关键作用。