St-Arnaud René, Dardenne Olivier, Prud'homme Josée, Hacking S Adam, Glorieux Francis H
Genetics Unit, Shriners Hospital for Children, Montreal (Quebec), Canada H3G 1A6.
J Cell Biochem. 2003 Feb 1;88(2):245-51. doi: 10.1002/jcb.10348.
Mutations in the human 25-hydroxyvitamin-D(3)-1alpha-hydroxylase (CYP27B1) gene cause pseudo vitamin D deficiency rickets (PDDR). The kidney is the main site of expression of the CYP27B1 gene, but expression has been documented in other cell types, including chondrocytes. We engineered a tissue-specific and a conventional knockout of CYP27B1 in mice. The conventional knockout strain reproduced the PDDR phenotype. Homozygote mutant animals were treated with 1,25(OH)(2)D(3) or fed a high-calcium diet (2% calcium, 1.25% phosphate, 20% lactose) for 5 weeks post-weaning. Blood biochemistry revealed that both rescue treatments corrected the hypocalcemia and secondary hyperparathyroidism. Bone histomorphometry confirmed that rickets were cured. The rescue regimen restored the biomechanical properties of the bone tissue. Mice carrying the loxP-bearing allele were bred to transgenic animals expressing the Cre recombinase in chondrocytes under the control of the collagen type II promoter. Genotyping confirmed excision of exon 8 in chondrocytes. Serum biochemistry revealed that mineral ion homeostasis is normal in mutant animals. Preliminary observation of bone tissue from mutant mice did not reveal major changes to the growth plate. Precise histomorphometric analysis will be required to assess the impact of chondrocyte-specific inactivation of CYP27B1 on the maturation and function of growth plate cells in vivo.
人类25-羟基维生素D(3)-1α-羟化酶(CYP27B1)基因的突变会导致假性维生素D缺乏性佝偻病(PDDR)。肾脏是CYP27B1基因表达的主要部位,但在包括软骨细胞在内的其他细胞类型中也有该基因表达的记录。我们构建了小鼠CYP27B1基因的组织特异性敲除和常规敲除模型。常规敲除品系再现了PDDR表型。对纯合子突变动物在断奶后用1,25(OH)₂D₃治疗或给予高钙饮食(2%钙、1.2%磷、20%乳糖)持续5周。血液生化检查显示,两种挽救治疗均纠正了低钙血症和继发性甲状旁腺功能亢进。骨组织形态计量学证实佝偻病已治愈。挽救方案恢复了骨组织的生物力学特性。将携带含loxP等位基因的小鼠与在II型胶原启动子控制下在软骨细胞中表达Cre重组酶的转基因动物进行杂交。基因分型证实软骨细胞中外显子8被切除。血清生化检查显示突变动物的矿物离子稳态正常。对突变小鼠骨组织的初步观察未发现生长板有重大变化。需要进行精确的组织形态计量学分析来评估CYP27B1在软骨细胞中的特异性失活对体内生长板细胞成熟和功能的影响。