Suppr超能文献

利用一般回归和概率神经网络,通过二维化学结构衍生的拓扑描述符预测人体肠道吸收。

Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures.

作者信息

Niwa Tomoko

机构信息

Discovery Research Laboratory, Nippon Shinyaku Co., Ltd., 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku Kyoto, 601-8550 Japan.

出版信息

J Chem Inf Comput Sci. 2003 Jan-Feb;43(1):113-9. doi: 10.1021/ci020013r.

Abstract

The objective of this study was to develop rapid and reliable methods to predict the percent human intestinal absorption (%HIA) of compounds based on their 2D descriptors. The analyzed data set included 86 drug and drug-like molecules and was the same as that studied by Wessel and co-workers. Instead of using three-dimensional descriptors such as polar surface area, which require lengthy computations, we employed only two-dimensional topological descriptors derived from information about the two-dimensional structure of molecules. The %HIA values were modeled using a general regression neural network (GRNN) and a probabilistic neural network (PNN), variants of normalized radial basis function networks. Both networks performed well to model the %HIA values. The root-mean square (rms) error was 22.8 %HIA unit for the external prediction set for a GRNN model, and 80% of the external prediction set was correctly classified for a PNN model, indicating the potential of our approach to estimate the %HIA values for a large set of compounds as virtual libraries.

摘要

本研究的目的是开发基于二维描述符快速可靠地预测化合物人体肠道吸收百分比(%HIA)的方法。分析的数据集包含86种药物和类药物分子,与韦塞尔及其同事研究的数据集相同。我们没有使用诸如极性表面积等需要冗长计算的三维描述符,而是仅采用从分子二维结构信息衍生而来的二维拓扑描述符。使用通用回归神经网络(GRNN)和概率神经网络(PNN)(归一化径向基函数网络的变体)对%HIA值进行建模。两个网络在对%HIA值进行建模方面均表现良好。GRNN模型外部预测集的均方根(rms)误差为22.8 %HIA单位,PNN模型对外部预测集的正确分类率为80%,这表明我们的方法有潜力为大量作为虚拟库的化合物估计%HIA值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验