Suppr超能文献

口服清除率、细胞毒性和半数致死剂量的构效关系模型:筛选有前景的抗癌化合物

Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds.

作者信息

Boik John C, Newman Robert A

机构信息

Department of Experimental Therapeutics, University of Texas M, D, Anderson Cancer Center, 8000 El Rio, Houston, TX 77054, USA.

出版信息

BMC Pharmacol. 2008 Jun 13;8:12. doi: 10.1186/1471-2210-8-12.

Abstract

BACKGROUND

Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data.

RESULTS

Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance.

CONCLUSION

Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans.

摘要

背景

定量构效关系(QSAR)模型已成为抗癌药物研发中帮助识别有潜力先导化合物的常用工具。然而,很少有QSAR研究探讨多任务学习。多任务学习是一种允许在训练中使用不同但相关数据集的方法。本文开发了一组三个QSAR模型,以识别可能(a)对癌细胞表现出细胞毒性行为、(b)具有高大鼠半数致死剂量值(低全身毒性)以及(c)具有低至中等人体口服清除率(良好的药代动力学特征)的化合物。使用核多任务潜在分析(KMLA)构建模型,该方法能够有效处理大量相关数据特征、特征与响应之间的非线性关系以及多任务学习。当可用训练记录的数量相对于特征数量较少时,如口服清除率数据的情况,多任务学习特别有用。

结果

多任务学习适度但显著提高了口服清除率模型的分类精度。对于使用大量记录构建的细胞毒性模型,多任务学习不影响精度,但确实减少了计算时间。这里开发的模型用于预测115,000种天然化合物的活性。数百种天然化合物,特别是蒽醌类和黄酮类化合物,预计具有细胞毒性、高LD50值以及低至中等的口服清除率。

结论

多任务学习在某些QSAR模型中可能有用。构建了一组QSAR模型,并用于在一个大型药物库中筛选可能对多种体外癌细胞系具有细胞毒性、在大鼠中具有低全身毒性且在人体中具有良好药代动力学特性的化合物。

相似文献

2
Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.
J Chem Inf Model. 2017 Oct 23;57(10):2490-2504. doi: 10.1021/acs.jcim.7b00087. Epub 2017 Oct 2.
3
QSAR and Classification Study on Prediction of Acute Oral Toxicity of -Nitroso Compounds.
Int J Mol Sci. 2018 Oct 3;19(10):3015. doi: 10.3390/ijms19103015.
4
An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction.
Mol Pharm. 2019 Feb 4;16(2):533-541. doi: 10.1021/acs.molpharmaceut.8b00816. Epub 2019 Jan 4.
5
Evaluation of QSAR Equations for Virtual Screening.
Int J Mol Sci. 2020 Oct 22;21(21):7828. doi: 10.3390/ijms21217828.
6
3-D QSAR studies on new dibenzyltin(IV) anticancer agents by comparative molecular field analysis (CoMFA).
Bioorg Med Chem Lett. 2002 Jan 7;12(1):61-4. doi: 10.1016/s0960-894x(01)00684-9.
7
Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
Chem Biol Drug Des. 2007 Nov;70(5):424-36. doi: 10.1111/j.1747-0285.2007.00575.x.
8
Novel Consensus Architecture To Improve Performance of Large-Scale Multitask Deep Learning QSAR Models.
J Chem Inf Model. 2019 Nov 25;59(11):4613-4624. doi: 10.1021/acs.jcim.9b00526. Epub 2019 Oct 25.
10
3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition.
J Biomol Struct Dyn. 2019 Sep;37(14):3822-3837. doi: 10.1080/07391102.2018.1528888. Epub 2018 Dec 31.

引用本文的文献

1
In Silico ADME Methods Used in the Evaluation of Natural Products.
Pharmaceutics. 2025 Jul 31;17(8):1002. doi: 10.3390/pharmaceutics17081002.
3
Quassinoids from as Potential Dihydrofolate Reductase Inhibitors: A Computational Study.
Curr Pharm Biotechnol. 2024;25(16):2154-2165. doi: 10.2174/0113892010273336240221101506.
4
In Vitro and In Silico Analysis of the Anticancer Effects of Eurycomanone and Eurycomalactone from .
Plants (Basel). 2023 Jul 31;12(15):2827. doi: 10.3390/plants12152827.
6
Naïve Bayesian Models for Vero Cell Cytotoxicity.
Pharm Res. 2018 Jun 29;35(9):170. doi: 10.1007/s11095-018-2439-9.
7
CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds.
PLoS One. 2018 Jan 25;13(1):e0191838. doi: 10.1371/journal.pone.0191838. eCollection 2018.

本文引用的文献

3
5
Clinical pharmacology of 1,4-butanediol and gamma-hydroxybutyrate after oral 1,4-butanediol administration to healthy volunteers.
Clin Pharmacol Ther. 2007 Feb;81(2):178-84. doi: 10.1038/sj.clpt.6100037. Epub 2006 Dec 27.
6
Exploiting QSAR methods in lead optimization.
Curr Opin Drug Discov Devel. 2006 Jul;9(4):419-24.
7
Structure-based methods for the prediction of drug metabolism.
Expert Opin Drug Metab Toxicol. 2006 Aug;2(4):545-57. doi: 10.1517/17425255.2.4.545.
9
Structure-toxicity relationships of nitroaromatic compounds.
Mol Divers. 2006 May;10(2):233-45. doi: 10.1007/s11030-005-9002-4. Epub 2006 May 19.
10
PLS dimension reduction for classification with microarray data.
Stat Appl Genet Mol Biol. 2004;3:Article33. doi: 10.2202/1544-6115.1075. Epub 2004 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验