Suppr超能文献

口服清除率、细胞毒性和半数致死剂量的构效关系模型:筛选有前景的抗癌化合物

Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds.

作者信息

Boik John C, Newman Robert A

机构信息

Department of Experimental Therapeutics, University of Texas M, D, Anderson Cancer Center, 8000 El Rio, Houston, TX 77054, USA.

出版信息

BMC Pharmacol. 2008 Jun 13;8:12. doi: 10.1186/1471-2210-8-12.

Abstract

BACKGROUND

Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data.

RESULTS

Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance.

CONCLUSION

Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans.

摘要

背景

定量构效关系(QSAR)模型已成为抗癌药物研发中帮助识别有潜力先导化合物的常用工具。然而,很少有QSAR研究探讨多任务学习。多任务学习是一种允许在训练中使用不同但相关数据集的方法。本文开发了一组三个QSAR模型,以识别可能(a)对癌细胞表现出细胞毒性行为、(b)具有高大鼠半数致死剂量值(低全身毒性)以及(c)具有低至中等人体口服清除率(良好的药代动力学特征)的化合物。使用核多任务潜在分析(KMLA)构建模型,该方法能够有效处理大量相关数据特征、特征与响应之间的非线性关系以及多任务学习。当可用训练记录的数量相对于特征数量较少时,如口服清除率数据的情况,多任务学习特别有用。

结果

多任务学习适度但显著提高了口服清除率模型的分类精度。对于使用大量记录构建的细胞毒性模型,多任务学习不影响精度,但确实减少了计算时间。这里开发的模型用于预测115,000种天然化合物的活性。数百种天然化合物,特别是蒽醌类和黄酮类化合物,预计具有细胞毒性、高LD50值以及低至中等的口服清除率。

结论

多任务学习在某些QSAR模型中可能有用。构建了一组QSAR模型,并用于在一个大型药物库中筛选可能对多种体外癌细胞系具有细胞毒性、在大鼠中具有低全身毒性且在人体中具有良好药代动力学特性的化合物。

相似文献

5
Evaluation of QSAR Equations for Virtual Screening.QSAR 方程在虚拟筛选中的评估。
Int J Mol Sci. 2020 Oct 22;21(21):7828. doi: 10.3390/ijms21217828.
6
3-D QSAR studies on new dibenzyltin(IV) anticancer agents by comparative molecular field analysis (CoMFA).
Bioorg Med Chem Lett. 2002 Jan 7;12(1):61-4. doi: 10.1016/s0960-894x(01)00684-9.

引用本文的文献

本文引用的文献

6
Exploiting QSAR methods in lead optimization.
Curr Opin Drug Discov Devel. 2006 Jul;9(4):419-24.
7
Structure-based methods for the prediction of drug metabolism.
Expert Opin Drug Metab Toxicol. 2006 Aug;2(4):545-57. doi: 10.1517/17425255.2.4.545.
9
Structure-toxicity relationships of nitroaromatic compounds.硝基芳香族化合物的结构-毒性关系
Mol Divers. 2006 May;10(2):233-45. doi: 10.1007/s11030-005-9002-4. Epub 2006 May 19.
10
PLS dimension reduction for classification with microarray data.用于微阵列数据分类的偏最小二乘降维法
Stat Appl Genet Mol Biol. 2004;3:Article33. doi: 10.2202/1544-6115.1075. Epub 2004 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验