Suppr超能文献

寡核苷酸微阵列中的表面静电效应:结合热力学的控制与优化

Surface electrostatic effects in oligonucleotide microarrays: control and optimization of binding thermodynamics.

作者信息

Vainrub Arnold, Pettitt B Montgomery

机构信息

Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA.

出版信息

Biopolymers. 2003 Feb;68(2):265-70. doi: 10.1002/bip.10271.

Abstract

We present a theoretical thermodynamic framework for the design of more efficient oligonucleotide microarrays. A general thermodynamic relation is derived to describe the electrostatic surface effects on the binding of the assayed biomolecule to a surface-tethered molecular probe. The relation is applied to analyze how the nucleic acid target, the oligonuleotide probe, and their DNA duplex electrostatic interactions with the surface affect the hybridization on DNA arrays. Taking advantage of a closed form exact solution of the linear Poisson-Boltzmann equation for a charged ion-penetrable sphere in electrolyte solution interacting with a plane wall, we study the effects of the surface and solution conditions. Binding free energy is found as a function of the surface material, dielectric or metal, the surface charge density, linker molecule length, temperature, and added salt content. The charge or electric potential of the dielectric or metal surface, respectively, is shown to dominate the hybridization, especially at low added salt or short linker length. We predict that substantial enhancement of sensitivity, selectivity, and reliability of microarrays can be achieved by control of the surface conditions. As examples, we discuss how to overcome two limitations of current technologies: nonequal sensitivity of the probes with different GC and AT bases content, and poor match/mismatch discrimination. In addition, we suggest the design of microarray conditions where the tested nucleic acid is unfolded, thus making possible the screening of a larger sequence with single nucleotide resolution. These promising findings are discussed and further experimental tests suggested.

摘要

我们提出了一个用于设计更高效寡核苷酸微阵列的理论热力学框架。推导了一个通用的热力学关系式,以描述静电表面效应如何影响被检测生物分子与表面连接分子探针的结合。该关系式被用于分析核酸靶标、寡核苷酸探针及其与表面的DNA双链静电相互作用如何影响DNA阵列上的杂交。利用电解质溶液中带电离子可穿透球体与平面壁相互作用的线性泊松 - 玻尔兹曼方程的封闭形式精确解,我们研究了表面和溶液条件的影响。发现结合自由能是表面材料(电介质或金属)、表面电荷密度、连接分子长度、温度和添加盐含量的函数。电介质或金属表面的电荷或电势分别显示出对杂交起主导作用,尤其是在低盐添加量或短连接分子长度的情况下。我们预测,通过控制表面条件可以显著提高微阵列的灵敏度、选择性和可靠性。作为示例,我们讨论了如何克服当前技术的两个局限性:不同GC和AT碱基含量的探针灵敏度不均等,以及匹配/错配区分能力差。此外,我们建议设计微阵列条件,使被测核酸展开,从而能够以单核苷酸分辨率筛选更大的序列。对这些有前景的发现进行了讨论,并提出了进一步的实验测试建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验