Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas 77550-1156, United States.
J Phys Chem B. 2011 Nov 17;115(45):13300-3. doi: 10.1021/jp208141g. Epub 2011 Oct 24.
For DNA mounted on surfaces for microarrays, microbeads, and nanoparticles, the nature of the random attachment of oligonucleotide probes to an amorphous surface gives rise to a locally inhomogeneous probe density. These fluctuations of the probe surface density are inherent to all common surface or bead platforms, regardless of whether they exploit either an attachment of presynthesized probes or probes synthesized in situ on the surface. Here, we demonstrate for the first time the crucial role of the probe surface density fluctuations in the performance of DNA arrays. We account for the density fluctuations with a disordered two-dimensional surface model and derive the corresponding array hybridization isotherm that includes a counterion screened electrostatic repulsion between the assayed DNA and probe array. The calculated melting curves are in excellent agreement with published experimental results for arrays with both presynthesized and in situ synthesized oligonucleotide probes. The approach developed allows one to accurately predict the melting curves of DNA arrays using only the known sequence-dependent hybridization enthalpy and entropy in solution and the experimental macroscopic surface density of probes. This opens the way to high-precision theoretical design and optimization of probes and primers in widely used DNA array-based high-throughput technologies for gene expression, genotyping, next-generation sequencing, and surface polymerase extension.
对于用于微阵列、微珠和纳米粒子的表面固定化 DNA,寡核苷酸探针随机附着到无定形表面的性质导致探针密度的局部不均匀。这些探针表面密度的波动是所有常见的表面或珠平台固有的,无论它们是否利用预合成探针的附着或在表面原位合成探针。在这里,我们首次证明了探针表面密度波动在 DNA 阵列性能中的关键作用。我们使用无序二维表面模型来解释密度波动,并推导出相应的阵列杂交等温线,其中包括在测定的 DNA 和探针阵列之间的屏蔽抗衡离子的静电排斥。计算出的解链曲线与具有预合成和原位合成寡核苷酸探针的阵列的已发表实验结果非常吻合。所开发的方法允许仅使用已知的序列依赖性杂交焓和熵在溶液中和实验宏观探针表面密度,来准确预测 DNA 阵列的解链曲线。这为基于 DNA 阵列的高通量技术(如基因表达、基因分型、下一代测序和表面聚合酶延伸)中的探针和引物的高精度理论设计和优化开辟了道路。