Walinda Erik, Morimoto Daichi, Shirakawa Masahiro, Sugase Kenji
Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan.
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku Kyoto-Daigaku Katsura, Kyoto, 615-8510, Japan.
J Biomol NMR. 2017 May;68(1):41-52. doi: 10.1007/s10858-017-0113-x. Epub 2017 May 4.
Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F , F , F and F , F , F , F respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F F , at a time and records the resulting F F correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F F ("bright regions") are sampled. F F selection is achieved by Hartmann-Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F F -selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein-protein interactions and allosteric modulation of protein structure.
傅里叶变换核磁共振光谱法为蛋白质和核酸的结构、相互作用及动态运动提供了前所未有的深入见解。传统的生物分子核磁共振依赖于获取三维和四维(4D)数据矩阵,以分别在频域F、F、F和F、F、F、F中建立化学位移之间的相关性。虽然这些数据集信息丰富,但需要大量的采集时间,视觉上极不直观,需要专业知识来处理,并且对频域的暗区和亮区进行同等采样。在此,我们提出了一种获取生物分子多维化学位移相关性的替代方法。该策略一次聚焦于一个狭窄的频率范围F F,并通过二维核磁共振记录所得的F F相关光谱。结果,仅对频域中在F F中包含信号的区域(“亮区”)进行采样。F F选择通过使用弱射频场的哈特曼-哈恩交叉极化来实现。这种方法揭示的信息与传统4D实验相当,而维度的减少可能会缩短总采集时间,并简化光谱处理、解释和对比分析。泛素和脂肪酸结合蛋白4(FABP4)的从头归属、结构和动力学研究说明了F F选择性方法的潜在适用性。这一概念的进一步扩展可能会催生新的选择性核磁共振实验,以辅助位点特异性结构动力学、蛋白质-蛋白质相互作用和蛋白质结构变构调节的研究。