Atreya Hanudatta S, Eletsky Alexander, Szyperski Thomas
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA.
J Am Chem Soc. 2005 Apr 6;127(13):4554-5. doi: 10.1021/ja042562e.
A suite of novel (5,3)D G2FT triple resonance NMR experiments encoding highly resolved 5D spectral information is presented for sequential resonance assignment of proteins exhibiting high chemical shift degeneracy. Efficient resonance assignment is achieved by separate joint sampling of (i) chemical shifts which solely serve to provide increased resolution and (ii) shifts which also provide sequential connectivities. In these G2FT experiments, two G-matrix transformations are employed. Peaks are resolved along a first GFT dimension at both Omega(15N) + Omega(13C') and Omega(15N) - Omega(13C'), or at Omega(15N) + Omega(13Calpha) and Omega(15N) - Omega(13Calpha), to break backbone 15N,1HN chemical shift degeneracy. Sequential connectivities are established along a second GFT dimension by measuring intraresidue and sequential correlations at 2Omega(13Calpha), Omega(13Calpha + 13Cbeta), and Omega(13Calpha - 13Cbeta), or at Omega(13Calpha + 1Halpha) and Omega(13Calpha - 1Halpha), to resolve 13Calpha/beta,1Halpha chemical shift degeneracy. It is demonstrated that longitudinal proton relaxation optimization of out-and-back implementations suitable for deuterated proteins and nonlinear data sampling combined with maximum entropy reconstruction further accelerate G2FT NMR data acquisition speed. As a result, the spectral information can be obtained within hours, so that (5,3)D G2FT experiments are viable options for high-throughput structure determination in structural genomics. Applications are presented for 17 kDa alpha-helical protein YqbG and 13.5 kDa protein rps24e, targets of the Northeast Structural Genomics consortium, as well as for 9 kDa protein Z-domain. The high resolving power of the G2FT NMR experiments makes them attractive choices to study alpha-helical globular/membrane or (partially) unfolded proteins, thus promising to pave the way for NMR-based structural genomics of membrane proteins.
本文提出了一套新颖的(5,3)D G2FT三共振核磁共振实验,用于编码高分辨率的5D光谱信息,以对表现出高化学位移简并性的蛋白质进行序列共振归属。通过分别联合采样实现高效的共振归属:(i) 仅用于提高分辨率的化学位移,以及 (ii) 也提供序列连接性的位移。在这些G2FT实验中,采用了两种G矩阵变换。在Omega(15N) + Omega(13C')和Omega(15N) - Omega(13C'),或在Omega(15N) + Omega(13Calpha)和Omega(15N) - Omega(13Calpha)处,沿着第一个GFT维度解析峰,以打破主链15N,1HN化学位移简并性。通过在2Omega(13Calpha)、Omega(13Calpha + 13Cbeta)和Omega(13Calpha - 13Cbeta),或在Omega(13Calpha + 1Halpha)和Omega(13Calpha - 1Halpha)处测量残基内和序列相关性,沿着第二个GFT维度建立序列连接性,以解析13Calpha/beta,1Halpha化学位移简并性。结果表明,适用于氘代蛋白质的往返实施方案的纵向质子弛豫优化以及与最大熵重建相结合的非线性数据采样进一步加快了G2FT NMR数据采集速度。因此,数小时内即可获得光谱信息,使得(5,3)D G2FT实验成为结构基因组学中高通量结构测定的可行选择。本文展示了其在17 kDa的α-螺旋蛋白YqbG和13.5 kDa的蛋白rps24e(东北结构基因组学联盟的目标蛋白)以及9 kDa的蛋白Z结构域上的应用。G2FT NMR实验的高分辨率使其成为研究α-螺旋球状/膜蛋白或(部分)未折叠蛋白的有吸引力的选择,从而有望为基于NMR的膜蛋白结构基因组学铺平道路。