Caldwell Guy A, Cao Songsong, Sexton Elaina G, Gelwix Christopher C, Bevel John Paul, Caldwell Kim A
The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487, USA.
Hum Mol Genet. 2003 Feb 1;12(3):307-19. doi: 10.1093/hmg/ddg027.
Torsion dystonia is an autosomal dominant movement disorder characterized by involuntary, repetitive muscle contractions and twisted postures. The most severe early-onset form of dystonia has been linked to mutations in the human DYT1 (TOR1A) gene encoding a protein termed torsinA. While causative genetic alterations have been identified, the function of torsin proteins and the molecular mechanism underlying dystonia remain unknown. Phylogenetic analysis of the torsin protein family indicates these proteins share distant sequence similarity with the large and diverse family of AAA+ proteins. We have established the nematode, Caenorhabditis elegans, as a model system for examining torsin activity. Using an in vivo assay for polyglutamine repeat-induced protein aggregation in living animals, we have determined that ectopic overexpression of both human and C. elegans torsin proteins results in a dramatic reduction of polyglutamine-dependent protein aggregation in a manner similar to that previously reported for molecular chaperones. The suppressive effects of torsin overexpression persisted as animals aged, whereas a mutant nematode torsin protein was incapable of ameliorating aggregate formation. Antibody staining of transgenic animals indicated that both the C. elegans torsin-related protein TOR-2 and ubiquitin were localized to sites of protein aggregation. These data represent the first functional evidence of a role for torsins in effectively managing protein folding and suggest that possible breakdown in a neuroprotective mechanism that is, in part, mediated by torsins may be responsible for the neuronal dysfunction associated with dystonia.
扭转性肌张力障碍是一种常染色体显性运动障碍,其特征为不自主、重复性肌肉收缩和扭曲姿势。肌张力障碍最严重的早发型形式与人类DYT1(TOR1A)基因的突变有关,该基因编码一种名为扭转蛋白A的蛋白质。虽然已经确定了致病基因改变,但扭转蛋白的功能以及肌张力障碍的分子机制仍然未知。对扭转蛋白家族的系统发育分析表明,这些蛋白质与庞大多样的AAA + 蛋白质家族存在远缘序列相似性。我们已将线虫秀丽隐杆线虫建立为研究扭转蛋白活性的模型系统。通过在活体动物中进行的针对多聚谷氨酰胺重复序列诱导的蛋白质聚集的体内试验,我们确定人类和线虫扭转蛋白的异位过表达会导致多聚谷氨酰胺依赖性蛋白质聚集显著减少,其方式类似于先前报道的分子伴侣的作用方式。随着动物衰老,扭转蛋白过表达的抑制作用持续存在,而突变的线虫扭转蛋白则无法改善聚集体形成。对转基因动物的抗体染色表明,线虫中与扭转蛋白相关的蛋白质TOR - 2和泛素都定位于蛋白质聚集位点。这些数据代表了扭转蛋白在有效管理蛋白质折叠中作用的首个功能证据,并表明由扭转蛋白部分介导的神经保护机制可能出现的破坏可能是导致与肌张力障碍相关的神经元功能障碍的原因。