Cao Songsong, Gelwix Christopher C, Caldwell Kim A, Caldwell Guy A
Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
J Neurosci. 2005 Apr 13;25(15):3801-12. doi: 10.1523/JNEUROSCI.5157-04.2005.
Parkinson's disease (PD) is linked genetically to proteins that function in the management of cellular stress resulting from protein misfolding and oxidative damage. Overexpression or mutation of alpha-synuclein results in the formation of Lewy bodies and neurodegeneration of dopaminergic (DA) neurons. Human torsinA, mutations in which cause another movement disorder termed early-onset torsion dystonia, is highly expressed in DA neurons and is also a component of Lewy bodies. Previous work has established torsins as having molecular chaperone activity. Thus, we examined the ability of torsinA to manage cellular stress within DA neurons of the nematode Caenorhabditis elegans. Worm DA neurons undergo a reproducible pattern of neurodegeneration after treatment with 6-hydroxydopamine (6-OHDA), a neurotoxin commonly used to model PD. Overexpression of torsins in C. elegans DA neurons results in dramatic suppression of neurodegeneration after 6-OHDA treatment. In contrast, expression of either dystonia-associated mutant torsinA or combined overexpression of wild-type and mutant torsinA yielded greatly diminished neuroprotection against 6-OHDA. We further demonstrated that torsins seem to protect DA neurons from 6-OHDA through downregulating protein levels of the dopamine transporter (DAT-1) in vivo. Additionally, we determined that torsins protect robustly against DA neurodegeneration caused by overexpression of alpha-synuclein. Using mutant nematodes lacking DAT-1 function, we also showed that torsin neuroprotection from alpha-synuclein-induced degeneration occurs in a manner independent of this transporter. Together, these data have mechanistic implications for movement disorders, because our results demonstrate that torsin proteins have the capacity to manage sources of cellular stress within DA neurons.
帕金森病(PD)在基因上与在处理由蛋白质错误折叠和氧化损伤导致的细胞应激中发挥作用的蛋白质相关联。α-突触核蛋白的过表达或突变会导致路易小体的形成以及多巴胺能(DA)神经元的神经退行性变。人扭转蛋白A的突变会导致另一种称为早发性扭转性肌张力障碍的运动障碍,该蛋白在DA神经元中高度表达,也是路易小体的一个组成部分。先前的研究已证实扭转蛋白具有分子伴侣活性。因此,我们研究了扭转蛋白A在秀丽隐杆线虫DA神经元中处理细胞应激的能力。在用6-羟基多巴胺(6-OHDA,一种常用于模拟PD的神经毒素)处理后,线虫的DA神经元会经历一种可重复的神经退行性变模式。在秀丽隐杆线虫的DA神经元中过表达扭转蛋白可显著抑制6-OHDA处理后的神经退行性变。相比之下,表达与肌张力障碍相关的突变型扭转蛋白A或同时过表达野生型和突变型扭转蛋白A对6-OHDA的神经保护作用则大大减弱。我们进一步证明,扭转蛋白似乎通过在体内下调多巴胺转运体(DAT-1)的蛋白水平来保护DA神经元免受6-OHDA的损伤。此外,我们确定扭转蛋白能有力地保护神经元免受由α-突触核蛋白过表达引起的DA神经退行性变。使用缺乏DAT-1功能的突变线虫,我们还表明扭转蛋白对α-突触核蛋白诱导的神经退行性变的保护作用是以独立于该转运体的方式发生的。总之,这些数据对运动障碍具有机制上的启示意义,因为我们的结果表明扭转蛋白具有处理DA神经元内细胞应激源的能力。