Suppr超能文献

WorMachine:基于机器学习的蠕虫表型分析工具。

WorMachine: machine learning-based phenotypic analysis tool for worms.

机构信息

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

BMC Biol. 2018 Jan 16;16(1):8. doi: 10.1186/s12915-017-0477-0.

Abstract

BACKGROUND

Caenorhabditis elegans nematodes are powerful model organisms, yet quantification of visible phenotypes is still often labor-intensive, biased, and error-prone. We developed WorMachine, a three-step MATLAB-based image analysis software that allows (1) automated identification of C. elegans worms, (2) extraction of morphological features and quantification of fluorescent signals, and (3) machine learning techniques for high-level analysis.

RESULTS

We examined the power of WorMachine using five separate representative assays: supervised classification of binary-sex phenotype, scoring continuous-sexual phenotypes, quantifying the effects of two different RNA interference treatments, and measuring intracellular protein aggregation.

CONCLUSIONS

WorMachine is suitable for analysis of a variety of biological questions and provides an accurate and reproducible analysis tool for measuring diverse phenotypes. It serves as a "quick and easy," convenient, high-throughput, and automated solution for nematode research.

摘要

背景

秀丽隐杆线虫是一种强大的模式生物,但可见表型的量化仍然常常是劳动密集型的、有偏见的且容易出错的。我们开发了 WorMachine,这是一个基于 MATLAB 的三步图像分析软件,它允许(1)自动识别秀丽隐杆线虫,(2)提取形态特征和量化荧光信号,以及(3)用于高级分析的机器学习技术。

结果

我们使用五个独立的代表性实验来检验 WorMachine 的功能:二元性别表型的监督分类、连续性别表型的评分、量化两种不同 RNA 干扰处理的效果以及测量细胞内蛋白质聚集。

结论

WorMachine 适用于分析各种生物学问题,并提供了一种准确和可重复的分析工具,用于测量各种表型。它是线虫研究的一种“快速简便”、方便、高通量和自动化的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验