Suppr超能文献

鸡基底乳头毛细胞中大通量钙激活钾通道的变异

Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla.

作者信息

Duncan R K, Fuchs P A

机构信息

Department of Otolaryngology: Head and Neck Surgery, Johns Hopkins University, 521 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.

出版信息

J Physiol. 2003 Mar 1;547(Pt 2):357-71. doi: 10.1113/jphysiol.2002.029785. Epub 2003 Jan 17.

Abstract

The mechanism for electrical tuning in non-mammalian hair cells rests within the widely diverse kinetics of functionally distinct, large-conductance potassium channels (BK), thought to result from alternative splicing of the pore-forming alpha subunit and variable co-expression with an accessory beta subunit. Inside-out patches from hair cells along the chicken basilar papilla revealed 'tonotopic' gradations in calcium sensitivity and deactivation kinetics. The resonant frequency for the hair cell from which the patch was taken was estimated from deactivation rates, and this frequency reasonably matched that predicted from the originating cell's tonotopic location. The rates of deactivation for native BK channels were much faster than rates reported for cloned chicken BK channels including both alpha and beta subunits. This result was surprising since patches were pulled from hair cells in the apical half of the papilla where beta subunits are most highly expressed. Heterogeneity in the properties of native chicken BK channels implies a high degree of molecular variation and hinders our ability to identify those molecular constituents.

摘要

非哺乳动物毛细胞电调谐的机制在于功能各异的大电导钾通道(BK)具有广泛多样的动力学特性,这被认为是由孔形成α亚基的可变剪接以及与辅助β亚基的可变共表达所致。沿鸡基底乳头的毛细胞进行的内面向外膜片钳记录显示,钙敏感性和失活动力学存在“音频拓扑”梯度。根据失活速率估算了进行膜片钳记录的毛细胞的共振频率,该频率与根据起源细胞的音频拓扑位置预测的频率合理匹配。天然BK通道的失活速率比报道的包括α和β亚基的克隆鸡BK通道的失活速率快得多。这一结果令人惊讶,因为膜片是从乳头顶端一半的毛细胞中获取的,而此处β亚基表达最为丰富。天然鸡BK通道特性的异质性意味着分子变异程度很高,阻碍了我们识别这些分子成分的能力。

相似文献

1
Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla.
J Physiol. 2003 Mar 1;547(Pt 2):357-71. doi: 10.1113/jphysiol.2002.029785. Epub 2003 Jan 17.
2
Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5.
4
Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
J Comp Neurol. 2003 Jan 6;455(2):198-209. doi: 10.1002/cne.10471.
5
Tamoxifen inhibits BK channels in chick cochlea without alterations in voltage-dependent activation.
Am J Physiol Cell Physiol. 2009 Jul;297(1):C75-85. doi: 10.1152/ajpcell.00659.2008. Epub 2009 May 13.
6
The functional role of alternative splicing of Ca(2+)-activated K+ channels in auditory hair cells.
Ann N Y Acad Sci. 1999 Apr 30;868:379-85. doi: 10.1111/j.1749-6632.1999.tb11299.x.
8
A molecular mechanism for electrical tuning of cochlear hair cells.
Science. 1999 Jan 8;283(5399):215-7. doi: 10.1126/science.283.5399.215.
9
The electrical properties of auditory hair cells in the frog amphibian papilla.
J Neurosci. 1999 Jul 1;19(13):5275-92. doi: 10.1523/JNEUROSCI.19-13-05275.1999.
10
Tamoxifen alters gating of the BK alpha subunit and mediates enhanced interactions with the avian beta subunit.
Biochem Pharmacol. 2005 Jul 1;70(1):47-58. doi: 10.1016/j.bcp.2005.03.026.

引用本文的文献

1
Anatomical and molecular insights into avian inner ear sensory hair cell regeneration.
Dev Biol. 2025 Sep;525:13-25. doi: 10.1016/j.ydbio.2025.05.021. Epub 2025 May 23.
3
Wnt9a Can Influence Cell Fates and Neural Connectivity across the Radial Axis of the Developing Cochlea.
J Neurosci. 2017 Sep 13;37(37):8975-8988. doi: 10.1523/JNEUROSCI.1554-17.2017. Epub 2017 Aug 14.
4
A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear.
Nat Commun. 2014 May 20;5:3839. doi: 10.1038/ncomms4839.
5
A BK (Slo1) channel journey from molecule to physiology.
Channels (Austin). 2013 Nov-Dec;7(6):442-58. doi: 10.4161/chan.26242. Epub 2013 Sep 11.
6
Electrical tuning and transduction in short hair cells of the chicken auditory papilla.
J Neurophysiol. 2013 Apr;109(8):2007-20. doi: 10.1152/jn.01028.2012. Epub 2013 Jan 30.
7
Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.
Am J Physiol Cell Physiol. 2012 Jul 15;303(2):C143-50. doi: 10.1152/ajpcell.00062.2012. Epub 2012 Apr 25.
8
CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation.
Am J Physiol Cell Physiol. 2012 Mar 1;302(5):C766-80. doi: 10.1152/ajpcell.00339.2011. Epub 2011 Nov 16.
9
Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.
PLoS One. 2011;6(10):e26289. doi: 10.1371/journal.pone.0026289. Epub 2011 Oct 14.

本文引用的文献

2
Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5.
3
Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla.
Hear Res. 2001 Jun;156(1-2):81-94. doi: 10.1016/s0378-5955(01)00269-6.
4
8
The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea.
J Physiol. 1999 Aug 1;518 ( Pt 3)(Pt 3):653-65. doi: 10.1111/j.1469-7793.1999.0653p.x.
9
The functional role of alternative splicing of Ca(2+)-activated K+ channels in auditory hair cells.
Ann N Y Acad Sci. 1999 Apr 30;868:379-85. doi: 10.1111/j.1749-6632.1999.tb11299.x.
10
Mechanisms of hair cell tuning.
Annu Rev Physiol. 1999;61:809-34. doi: 10.1146/annurev.physiol.61.1.809.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验