Suppr超能文献

荧光假单胞菌菌株在大田土壤和甜菜根际中环状脂肽的产生。

Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere.

作者信息

Nielsen Tommy Harder, Sørensen Jan

机构信息

Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark.

出版信息

Appl Environ Microbiol. 2003 Feb;69(2):861-8. doi: 10.1128/AEM.69.2.861-868.2003.

Abstract

The production of cyclic lipopeptides (CLPs) with antifungal and biosurfactant properties by Pseudomonas fluorescens strains was investigated in bulk soil and in the sugar beet rhizosphere. Purified CLPs (viscosinamide, tensin, and amphisin) were first shown to remain highly stable and extractable (90%) when applied (ca. 5 microg g(-1)) to sterile soil, whereas all three compounds were degraded over 1 to 3 weeks in nonsterile soil. When a whole-cell inoculum of P. fluorescens strain DR54 containing a cell-bound pool of viscosinamide was added to the nonsterile soil, declining CLP concentrations were observed over a week. By comparison, addition of the strains 96.578 and DSS73 without cell-bound CLP pools did not result in detectable tensin or amphisin in the soil. In contrast, when sugar beet seeds were coated with the CLP-producing strains and subsequently germinated in nonsterile soil, strain DR54 maintained a high and constant viscosinamide level in the young rhizosphere for approximately 2 days while strains 96.578 and DSS73 exhibited significant production (net accumulation) of tensin or amphisin, reaching a maximum level after 2 days. All three CLPs remained detectable for several days in the rhizosphere. Subsequent tests of five other CLP-producing P. fluorescens strains also demonstrated significant production in the young rhizosphere. The results thus provide evidence that production of different CLPs is a common trait among many P. fluorescens strains in the soil environment, and further, that the production is taking place only in specific habitats like the rhizosphere of germinating sugar beet seeds rather than in the bulk soil.

摘要

研究了荧光假单胞菌菌株在大块土壤和甜菜根际中产生具有抗真菌和生物表面活性剂特性的环状脂肽(CLP)的情况。首先发现,当将纯化的CLP(viscosinamide、tensin和amphisin)以约5μg g⁻¹的量施用于无菌土壤时,它们能保持高度稳定且可提取(90%),而在非无菌土壤中,这三种化合物在1至3周内都会降解。当将含有细胞结合型viscosinamide库的荧光假单胞菌菌株DR54的全细胞接种物添加到非无菌土壤中时,一周内观察到CLP浓度下降。相比之下,添加没有细胞结合型CLP库的菌株96.578和DSS73,在土壤中未检测到tensin或amphisin。相反,当用产生CLP的菌株包被甜菜种子,随后在非无菌土壤中使其发芽时,菌株DR54在幼根际中能在大约2天内维持较高且恒定的viscosinamide水平,而菌株96.578和DSS73则表现出tensin或amphisin的显著产生(净积累),在2天后达到最高水平。所有三种CLP在根际中数天内都可检测到。随后对其他五种产生CLP的荧光假单胞菌菌株的测试也表明在幼根际中有显著产生。因此,结果证明不同CLP的产生是土壤环境中许多荧光假单胞菌菌株的共同特征,而且进一步表明这种产生仅发生在特定生境中,如发芽甜菜种子的根际,而非大块土壤中。

相似文献

1
Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere.
Appl Environ Microbiol. 2003 Feb;69(2):861-8. doi: 10.1128/AEM.69.2.861-868.2003.
4
Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73.
Appl Environ Microbiol. 2005 Jul;71(7):4112-6. doi: 10.1128/AEM.71.7.4112-4116.2005.
6
Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere.
FEMS Microbiol Ecol. 2000 Aug 1;33(2):139-146. doi: 10.1111/j.1574-6941.2000.tb00736.x.
9
Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens.
Appl Environ Microbiol. 2009 Nov;75(21):6804-11. doi: 10.1128/AEM.01272-09. Epub 2009 Aug 28.

引用本文的文献

2
Does regulation hold the key to optimizing lipopeptide production in for biotechnology?
Front Bioeng Biotechnol. 2024 Feb 27;12:1363183. doi: 10.3389/fbioe.2024.1363183. eCollection 2024.
5
Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity.
Molecules. 2022 Jan 7;27(2):372. doi: 10.3390/molecules27020372.
6
Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity.
Microorganisms. 2021 Sep 18;9(9):1988. doi: 10.3390/microorganisms9091988.
7
Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries.
Antioxidants (Basel). 2021 Sep 15;10(9):1472. doi: 10.3390/antiox10091472.
8
Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking.
Sci Rep. 2021 Aug 11;11(1):16286. doi: 10.1038/s41598-021-95788-9.
9
Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond.
Front Chem. 2021 Jun 18;9:691532. doi: 10.3389/fchem.2021.691532. eCollection 2021.
10
Biological Control of Chili Damping-Off Disease, Caused by .
Front Microbiol. 2021 May 13;12:587431. doi: 10.3389/fmicb.2021.587431. eCollection 2021.

本文引用的文献

3
Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14.
Appl Environ Microbiol. 1996 Nov;62(11):4081-5. doi: 10.1128/aem.62.11.4081-4085.1996.
6
Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat.
Appl Environ Microbiol. 1990 Apr;56(4):908-12. doi: 10.1128/aem.56.4.908-912.1990.
7
New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats.
Appl Environ Microbiol. 1985 Jan;49(1):28-32. doi: 10.1128/aem.49.1.28-32.1985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验