Angelidis Apostolos S, Smith Gary M
Department of Food Science and Technology, University of California, Davis, California 95616, USA.
Appl Environ Microbiol. 2003 Feb;69(2):1013-22. doi: 10.1128/AEM.69.2.1013-1022.2003.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.
强效渗透溶质甘氨酸甜菜碱和肉碱的摄取与积累,使食源性病原体单核细胞增生李斯特菌能够在渗透压升高的环境中增殖,这常常导致基于盐的食品保存方法失效。迄今为止,已知单核细胞增生李斯特菌中有三种渗透溶质转运系统在发挥作用:甘氨酸甜菜碱转运蛋白I(BetL)、甘氨酸甜菜碱转运蛋白II(Gbu)和肉碱转运蛋白OpuC。我们通过构建单核细胞增生李斯特菌10403S的突变衍生物来研究每种转运蛋白对每种渗透溶质的特异性,这些突变衍生物分别单独拥有每种转运蛋白。动力学和稳态渗透溶质积累数据以及生长速率实验表明,渗透激活的甘氨酸甜菜碱转运很容易且有效地由Gbu和BetL介导,而OpuC的介导作用较小。无论胁迫盐的性质如何,OpuC和Gbu都表现出渗透刺激的肉碱转运。在NaCl胁迫下,BetL可介导较弱的肉碱摄取,但在KCl胁迫下则不能。单核细胞增生李斯特菌10403S中的其他转运蛋白似乎都不参与任何一种渗透溶质的渗透刺激转运,因为一个三重突变菌株既不产生甘氨酸甜菜碱或肉碱的转运也不产生积累,并且在渗透压升高的条件下生长时,任何一种渗透溶质都无法挽救该菌株。