Conway Tyrrell, Schoolnik Gary K
Advanced Center for Genome Technology, The University of Oklahoma, Norman, OK 73019-0245, USA.
Mol Microbiol. 2003 Feb;47(4):879-89. doi: 10.1046/j.1365-2958.2003.03338.x.
The bacterial transcriptome is a dynamic entity that reflects the organism's immediate, ongoing and genome-wide response to its environment. Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a 'system' that is more than the sum of its parts. The vigilance of microorganisms to environmental change, the alacrity of the transcriptional response, the short half-life of bacterial mRNA and the genome-scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to chang-ing conditions of growth; the identification of co-ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of bacterial pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival in the host's microenvironment. Identifying these colonization strategies and their cognate expression patterns involves a 'deconstruction' process that combines bioinformatics analysis and in vitro DNA array experimentation.
细菌转录组是一个动态实体,反映了生物体对其环境的即时、持续且全基因组范围的反应。微阵列表达谱分析提供了转录世界的全面图景,使我们能够将生物体视为一个“系统”,而不仅仅是其各个部分的总和。微生物对环境变化的警觉性、转录反应的敏捷性、细菌mRNA的短半衰期以及研究的基因组规模性质共同解释了这种方法的强大之处。这些相同的特征也带来了最重大的实验设计和实施问题,除非克服这些问题,否则很可能会产生扭曲的转录组图像。相反,一个构思合理且实施得当的微阵列实验的表达谱可用于假设检验:揭示生物体适应不断变化的生长条件所依据的代谢和生物合成途径;识别协同调控的基因;介导适应性反应的调控回路和信号转导系统;以及发育程序的时间特征。通过微阵列表达谱分析研究细菌致病性带来了特殊的挑战和机遇。尽管技术障碍众多,但获取在组织中生长的生物体的表达谱可能会揭示其在宿主微环境中的生长和存活策略。识别这些定殖策略及其相关的表达模式涉及一个将生物信息学分析与体外DNA阵列实验相结合的“解构”过程。