Marlow Angela J, Fisher Simon E, Francks Clyde, MacPhie I Laurence, Cherny Stacey S, Richardson Alex J, Talcott Joel B, Stein John F, Monaco Anthony P, Cardon Lon R
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
Am J Hum Genet. 2003 Mar;72(3):561-70. doi: 10.1086/368201. Epub 2003 Feb 13.
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits.
复杂性状连锁结果的复制极其困难,部分原因在于无法精确测量潜在表型、样本量小、遗传异质性以及分析中使用的统计方法。通常,在任何特定研究中,都会收集多个相关性状,但这些性状都是独立分析的,或者最多进行双变量分析。理论观点表明,对所有可用性状进行全面的多变量分析应该能提供更大的检测连锁的能力;然而,这尚未在全基因组范围内进行评估。在这里,我们对影响发育性阅读障碍家庭中阅读和语言相关指标的数量性状位点进行多变量全基因组分析。这些分析结果比之前对同一数据集进行的单变量分析结果要清晰得多,有助于解决一些关键问题。这些结果凸显了多变量分析对于复杂疾病剖析连锁结果在相关性状中的相关性。这里采用的方法可能有助于在广泛的复杂性状中对易感基因进行定位克隆。