Suppr超能文献

水力隔离栓塞木质部导管的再充盈:模型计算

Refilling of a hydraulically isolated embolized xylem vessel: model calculations.

作者信息

Vesala Timo, Hölttä Teemu, Perämäki Martti, Nikinmaa Eero

机构信息

Department of Physical Sciences, PO Box 64, FIN-00014, University of Helsinki, Finland.

出版信息

Ann Bot. 2003 Mar;91(4):419-28. doi: 10.1093/aob/mcg022.

Abstract

When they are hydraulically isolated, embolized xylem vessels can be refilled, while adjacent vessels remain under tension. This implies that the pressure of water in the refilling vessel must be equal to the bubble gas pressure, which sets physical constraints for recovery. A model of water exudation into the cylindrical vessel and of bubble dissolution based on the assumption of hydraulic isolation is developed. Refilling is made possible by the turgor of the living cells adjacent to the refilling vessel, and by a reflection coefficient below 1 for the exchange of solutes across the interface between the vessel and the adjacent cells. No active transport of solutes is assumed. Living cells are also capable of importing water from the water-conducting vessels. The most limiting factors were found to be the osmotic potential of living cells and the ratio of the volume of the adjacent living cells to that of the embolized vessel. With values for these of 1.5 MPa and 1, respectively, refilling times were in the order of hours for a broad range of possible values of water conductivity coefficients and effective diffusion distances for dissolved air, when the xylem water tension was below 0.6 MPa and constant. Inclusion of the daily pattern for xylem tension improved the simulations. The simulated gas pressure within the refilling vessel was in accordance with recent experimental results. The study shows that the refilling process is physically possible under hydraulic isolation, while water in surrounding vessels is under negative pressure. However, the osmotic potentials in the refilling vessel tend to be large (in the order of 1 MPa). Only if the xylem water tension is, at most, twice atmospheric pressure, the reflection coefficient remains close to 1 (0.95) and the ratio of the volume of the adjacent living cells to that of the embolized vessel is about 2, does the osmotic potential stay below 0.4 MPa.

摘要

当木质部导管被水力隔离时,栓塞的木质部导管可以重新充满水,而相邻的导管仍处于张力状态。这意味着重新充水导管中的水压必须等于气泡气体压力,这为恢复设定了物理限制。基于水力隔离的假设,建立了水渗入圆柱形导管和气泡溶解的模型。重新充水是由与重新充水导管相邻的活细胞的膨压以及溶质在导管与相邻细胞界面处交换的反射系数低于1来实现的。不假定溶质有主动运输。活细胞也能够从导水导管中吸收水分。发现最限制因素是活细胞的渗透势以及相邻活细胞体积与栓塞导管体积的比率。当木质部水张力低于0.6MPa且恒定时,对于广泛的可能的导水系数值和溶解空气的有效扩散距离值,这些值分别为1.5MPa和1时,重新充水时间约为数小时。纳入木质部张力的日变化模式改善了模拟结果。重新充水导管内模拟的气体压力与最近的实验结果一致。研究表明,在水力隔离条件下,当周围导管中的水处于负压时,重新充水过程在物理上是可能的。然而,重新充水导管中的渗透势往往很大(约为1MPa)。只有当木质部水张力最多为大气压的两倍、反射系数保持接近1(0.95)且相邻活细胞体积与栓塞导管体积的比率约为2时,渗透势才会保持在0.4MPa以下。

相似文献

1
Refilling of a hydraulically isolated embolized xylem vessel: model calculations.
Ann Bot. 2003 Mar;91(4):419-28. doi: 10.1093/aob/mcg022.
2
Refilling of embolized vessels in young stems of laurel. Do We need a new paradigm?
Plant Physiol. 1999 May;120(1):11-22. doi: 10.1104/pp.120.1.11.
4
Water rise kinetics in refilling xylem after desiccation in a resurrection plant.
New Phytol. 2000 Nov;148(2):221-38. doi: 10.1046/j.1469-8137.2000.00759.x.
5
In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging.
Ann Bot. 2008 Mar;101(4):595-602. doi: 10.1093/aob/mcm312. Epub 2007 Dec 12.
8
Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
Plant Physiol. 2015 Aug;168(4):1636-47. doi: 10.1104/pp.15.00333. Epub 2015 Jun 19.
9
Bordered pit structure and vessel wall surface properties. Implications for embolism repair.
Plant Physiol. 2000 Jul;123(3):1015-20. doi: 10.1104/pp.123.3.1015.
10
The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography.
Plant Physiol. 2010 Nov;154(3):1088-95. doi: 10.1104/pp.110.162396. Epub 2010 Sep 14.

引用本文的文献

2
Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis.
Planta. 2013 Aug;238(2):307-15. doi: 10.1007/s00425-013-1889-x. Epub 2013 May 9.
3
Visualization of embolism formation in the xylem of liana stems using neutron radiography.
Ann Bot. 2013 Apr;111(4):723-30. doi: 10.1093/aob/mct014. Epub 2013 Feb 7.
7
Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas).
J Exp Bot. 2011 Jul;62(11):3885-94. doi: 10.1093/jxb/err081. Epub 2011 Mar 29.
8
The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography.
Plant Physiol. 2010 Nov;154(3):1088-95. doi: 10.1104/pp.110.162396. Epub 2010 Sep 14.
9
In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging.
Ann Bot. 2008 Mar;101(4):595-602. doi: 10.1093/aob/mcm312. Epub 2007 Dec 12.
10
Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area.
Plant Physiol. 2007 Jun;144(2):1157-65. doi: 10.1104/pp.106.089250. Epub 2007 Apr 20.

本文引用的文献

1
Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism.
New Phytol. 1996 Jan;132(1):47-56. doi: 10.1111/j.1469-8137.1996.tb04507.x.
3
Collapse of Water-Stress Emboli in the Tracheids of Thuja occidentalis L.
Plant Physiol. 1994 Dec;106(4):1639-1646. doi: 10.1104/pp.106.4.1639.
5
Bordered pit structure and vessel wall surface properties. Implications for embolism repair.
Plant Physiol. 2000 Jul;123(3):1015-20. doi: 10.1104/pp.123.3.1015.
6
Refilling of embolized vessels in young stems of laurel. Do We need a new paradigm?
Plant Physiol. 1999 May;120(1):11-22. doi: 10.1104/pp.120.1.11.
7
Embolism repair and xylem tension: Do We need a miracle?
Plant Physiol. 1999 May;120(1):7-10. doi: 10.1104/pp.120.1.7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验