Verbeek J J, Vlassis N, Kröse B
Informatics Institute, University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.
Neural Comput. 2003 Feb;15(2):469-85. doi: 10.1162/089976603762553004.
This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one after the other. We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into the existing mixture. The resulting algorithm resolves the sensitivity to initialization of state-of-the-art methods, like expectation maximization, and has running time linear in the number of data points and quadratic in the (final) number of mixture components. Due to its greedy nature, the algorithm can be particularly useful when the optimal number of mixture components is unknown. Experimental results comparing the proposed algorithm to other methods on density estimation and texture segmentation are provided.
本文关注高斯混合模型的贪心学习。在贪心方法中,混合成分逐个插入到混合模型中。我们提出一种启发式方法来搜索要插入的最优成分。以随机方式生成一组候选新成分。对于这些候选成分中的每一个,我们找到局部最优新成分并将其插入到现有混合模型中。所得算法解决了诸如期望最大化等现有方法对初始化的敏感性问题,并且运行时间与数据点数量呈线性关系,与(最终)混合成分数量呈二次关系。由于其贪心性质,当混合成分的最优数量未知时,该算法可能特别有用。文中给出了将所提出算法与其他方法在密度估计和纹理分割方面进行比较的实验结果。