Chen Zhe, Vijayan Sujith, Barbieri Riccardo, Wilson Matthew A, Brown Emery N
Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Neural Comput. 2009 Jul;21(7):1797-862. doi: 10.1162/neco.2009.06-08-799.
UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time probability models for estimating UP and DOWN states from multiunit neural spiking activity. We model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking activity and actual multi- unit spiking activity recorded from primary somatosensory cortex in a behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions of this process.
上行和下行状态,即神经元群体的放电活动在增加和减少之间的周期性波动,是皮层回路的一个基本特征。理解上行-下行状态动态对于理解这些回路如何在大脑中表征和传递信息很重要。迄今为止,在表征上行-下行状态动态的随机特性方面所做的工作有限。我们提出了一组马尔可夫和半马尔可夫离散和连续时间概率模型,用于从多单元神经放电活动中估计上行和下行状态。我们将多单元神经放电活动建模为一个随机点过程,由隐藏(上行和下行)状态和总体放电历史调制。我们使用期望最大化(EM)算法和在E步中使用可逆跳跃马尔可夫链蒙特卡罗采样的蒙特卡罗EM算法,通过最大似然联合估计隐藏状态和模型参数。我们将我们的模型和算法应用于对模拟的多单元放电活动以及在慢波睡眠期间从行为大鼠的初级体感皮层记录的实际多单元放电活动的分析。我们的方法提供了上行-下行状态动态的统计表征,可作为验证和完善该过程机制描述的基础。