Suppr超能文献

用于推断神经元兴奋和抑制状态的离散和连续时间概率模型及算法。

Discrete- and continuous-time probabilistic models and algorithms for inferring neuronal UP and DOWN states.

作者信息

Chen Zhe, Vijayan Sujith, Barbieri Riccardo, Wilson Matthew A, Brown Emery N

机构信息

Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

出版信息

Neural Comput. 2009 Jul;21(7):1797-862. doi: 10.1162/neco.2009.06-08-799.

Abstract

UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time probability models for estimating UP and DOWN states from multiunit neural spiking activity. We model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking activity and actual multi- unit spiking activity recorded from primary somatosensory cortex in a behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions of this process.

摘要

上行和下行状态,即神经元群体的放电活动在增加和减少之间的周期性波动,是皮层回路的一个基本特征。理解上行-下行状态动态对于理解这些回路如何在大脑中表征和传递信息很重要。迄今为止,在表征上行-下行状态动态的随机特性方面所做的工作有限。我们提出了一组马尔可夫和半马尔可夫离散和连续时间概率模型,用于从多单元神经放电活动中估计上行和下行状态。我们将多单元神经放电活动建模为一个随机点过程,由隐藏(上行和下行)状态和总体放电历史调制。我们使用期望最大化(EM)算法和在E步中使用可逆跳跃马尔可夫链蒙特卡罗采样的蒙特卡罗EM算法,通过最大似然联合估计隐藏状态和模型参数。我们将我们的模型和算法应用于对模拟的多单元放电活动以及在慢波睡眠期间从行为大鼠的初级体感皮层记录的实际多单元放电活动的分析。我们的方法提供了上行-下行状态动态的统计表征,可作为验证和完善该过程机制描述的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d01f/2799196/0a3ec6434f34/nihms142917f1.jpg

相似文献

8
Multiresolution entropy measure for neuronal multiunit activity.神经元多单位活动的多分辨率熵测量
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4715-8. doi: 10.1109/IEMBS.2009.5334199.

引用本文的文献

1
Active Learning for Discrete Latent Variable Models.离散潜在变量模型的主动学习
Neural Comput. 2024 Feb 16;36(3):437-474. doi: 10.1162/neco_a_01646.
5
Switching state-space modeling of neural signal dynamics.切换神经信号动力学的状态空间建模。
PLoS Comput Biol. 2023 Aug 28;19(8):e1011395. doi: 10.1371/journal.pcbi.1011395. eCollection 2023 Aug.
8
Estimating Dynamic Signals From Trial Data With Censored Values.从带有删失值的试验数据中估计动态信号
Comput Psychiatr. 2017 Oct 1;1:58-81. doi: 10.1162/CPSY_a_00003. eCollection 2017 Oct.

本文引用的文献

7
Free-paced high-performance brain-computer interfaces.自由节奏高性能脑机接口
J Neural Eng. 2007 Sep;4(3):336-47. doi: 10.1088/1741-2560/4/3/018. Epub 2007 Aug 22.
8
General-purpose filter design for neural prosthetic devices.神经假体装置的通用滤波器设计
J Neurophysiol. 2007 Oct;98(4):2456-75. doi: 10.1152/jn.01118.2006. Epub 2007 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验