Suppr超能文献

用于推断神经元兴奋和抑制状态的离散和连续时间概率模型及算法。

Discrete- and continuous-time probabilistic models and algorithms for inferring neuronal UP and DOWN states.

作者信息

Chen Zhe, Vijayan Sujith, Barbieri Riccardo, Wilson Matthew A, Brown Emery N

机构信息

Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

出版信息

Neural Comput. 2009 Jul;21(7):1797-862. doi: 10.1162/neco.2009.06-08-799.

Abstract

UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time probability models for estimating UP and DOWN states from multiunit neural spiking activity. We model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking activity and actual multi- unit spiking activity recorded from primary somatosensory cortex in a behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions of this process.

摘要

上行和下行状态,即神经元群体的放电活动在增加和减少之间的周期性波动,是皮层回路的一个基本特征。理解上行-下行状态动态对于理解这些回路如何在大脑中表征和传递信息很重要。迄今为止,在表征上行-下行状态动态的随机特性方面所做的工作有限。我们提出了一组马尔可夫和半马尔可夫离散和连续时间概率模型,用于从多单元神经放电活动中估计上行和下行状态。我们将多单元神经放电活动建模为一个随机点过程,由隐藏(上行和下行)状态和总体放电历史调制。我们使用期望最大化(EM)算法和在E步中使用可逆跳跃马尔可夫链蒙特卡罗采样的蒙特卡罗EM算法,通过最大似然联合估计隐藏状态和模型参数。我们将我们的模型和算法应用于对模拟的多单元放电活动以及在慢波睡眠期间从行为大鼠的初级体感皮层记录的实际多单元放电活动的分析。我们的方法提供了上行-下行状态动态的统计表征,可作为验证和完善该过程机制描述的基础。

相似文献

1
Discrete- and continuous-time probabilistic models and algorithms for inferring neuronal UP and DOWN states.
Neural Comput. 2009 Jul;21(7):1797-862. doi: 10.1162/neco.2009.06-08-799.
2
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
PLoS Comput Biol. 2011 Nov;7(11):e1002211. doi: 10.1371/journal.pcbi.1002211. Epub 2011 Nov 3.
3
Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003859. doi: 10.1371/journal.pcbi.1003859. eCollection 2014 Oct.
4
Hidden Markov models for the stimulus-response relationships of multistate neural systems.
Neural Comput. 2011 May;23(5):1071-132. doi: 10.1162/NECO_a_00118. Epub 2011 Feb 7.
6
Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.
PLoS Comput Biol. 2011 Dec;7(12):e1002294. doi: 10.1371/journal.pcbi.1002294. Epub 2011 Dec 15.
7
Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
J Neurophysiol. 2018 Apr 1;119(4):1394-1410. doi: 10.1152/jn.00684.2017. Epub 2017 Dec 20.
8
Multiresolution entropy measure for neuronal multiunit activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4715-8. doi: 10.1109/IEMBS.2009.5334199.

引用本文的文献

1
Active Learning for Discrete Latent Variable Models.
Neural Comput. 2024 Feb 16;36(3):437-474. doi: 10.1162/neco_a_01646.
2
A machine learning approach for real-time cortical state estimation.
J Neural Eng. 2024 Feb 1;21(1). doi: 10.1088/1741-2552/ad1f7b.
3
5
Switching state-space modeling of neural signal dynamics.
PLoS Comput Biol. 2023 Aug 28;19(8):e1011395. doi: 10.1371/journal.pcbi.1011395. eCollection 2023 Aug.
6
Network Model With Reduced Metabolic Rate Predicts Spatial Synchrony of Neuronal Activity.
Front Comput Neurosci. 2021 Oct 7;15:738362. doi: 10.3389/fncom.2021.738362. eCollection 2021.
7
A hidden Markov model reliably characterizes ketamine-induced spectral dynamics in macaque local field potentials and human electroencephalograms.
PLoS Comput Biol. 2021 Aug 18;17(8):e1009280. doi: 10.1371/journal.pcbi.1009280. eCollection 2021 Aug.
8
Estimating Dynamic Signals From Trial Data With Censored Values.
Comput Psychiatr. 2017 Oct 1;1:58-81. doi: 10.1162/CPSY_a_00003. eCollection 2017 Oct.
9
UP-DOWN cortical dynamics reflect state transitions in a bistable network.
Elife. 2017 Aug 4;6:e22425. doi: 10.7554/eLife.22425.
10
Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.
PLoS Comput Biol. 2015 Nov 11;11(11):e1004547. doi: 10.1371/journal.pcbi.1004547. eCollection 2015 Nov.

本文引用的文献

1
Detection of bursts in extracellular spike trains using hidden semi-Markov point process models.
J Comput Neurosci. 2010 Aug;29(1-2):203-212. doi: 10.1007/s10827-009-0182-2. Epub 2009 Aug 21.
2
Detecting neural-state transitions using hidden Markov models for motor cortical prostheses.
J Neurophysiol. 2008 Oct;100(4):2441-52. doi: 10.1152/jn.00924.2007. Epub 2008 Jul 9.
4
Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model.
PLoS Comput Biol. 2008 Mar 7;4(3):e1000022. doi: 10.1371/journal.pcbi.1000022.
5
Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18772-7. doi: 10.1073/pnas.0705546104. Epub 2007 Nov 13.
6
Statistical models for neural encoding, decoding, and optimal stimulus design.
Prog Brain Res. 2007;165:493-507. doi: 10.1016/S0079-6123(06)65031-0.
7
Free-paced high-performance brain-computer interfaces.
J Neural Eng. 2007 Sep;4(3):336-47. doi: 10.1088/1741-2560/4/3/018. Epub 2007 Aug 22.
8
General-purpose filter design for neural prosthetic devices.
J Neurophysiol. 2007 Oct;98(4):2456-75. doi: 10.1152/jn.01118.2006. Epub 2007 May 23.
9
Enhancement of visual responsiveness by spontaneous local network activity in vivo.
J Neurophysiol. 2007 Jun;97(6):4186-202. doi: 10.1152/jn.01114.2006. Epub 2007 Apr 4.
10
Continuous-index hidden Markov modelling of array CGH copy number data.
Bioinformatics. 2007 Apr 15;23(8):1006-14. doi: 10.1093/bioinformatics/btm059. Epub 2007 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验