Suppr超能文献

一种基于单纯复形的肿瘤进展数据分解方法。

A simplicial complex-based approach to unmixing tumor progression data.

作者信息

Roman Theodore, Nayyeri Amir, Fasy Brittany Terese, Schwartz Russell

机构信息

Computatational Biology Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, USA.

Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, USA.

出版信息

BMC Bioinformatics. 2015 Aug 12;16:254. doi: 10.1186/s12859-015-0694-x.

Abstract

BACKGROUND

Tumorigenesis is an evolutionary process by which tumor cells acquire mutations through successive diversification and differentiation. There is much interest in reconstructing this process of evolution due to its relevance to identifying drivers of mutation and predicting future prognosis and drug response. Efforts are challenged by high tumor heterogeneity, though, both within and among patients. In prior work, we showed that this heterogeneity could be turned into an advantage by computationally reconstructing models of cell populations mixed to different degrees in distinct tumors. Such mixed membership model approaches, however, are still limited in their ability to dissect more than a few well-conserved cell populations across a tumor data set.

RESULTS

We present a method to improve on current mixed membership model approaches by better accounting for conserved progression pathways between subsets of cancers, which imply a structure to the data that has not previously been exploited. We extend our prior methods, which use an interpretation of the mixture problem as that of reconstructing simple geometric objects called simplices, to instead search for structured unions of simplices called simplicial complexes that one would expect to emerge from mixture processes describing branches along an evolutionary tree. We further improve on the prior work with a novel objective function to better identify mixtures corresponding to parsimonious evolutionary tree models. We demonstrate that this approach improves on our ability to accurately resolve mixtures on simulated data sets and demonstrate its practical applicability on a large RNASeq tumor data set.

CONCLUSIONS

Better exploiting the expected geometric structure for mixed membership models produced from common evolutionary trees allows us to quickly and accurately reconstruct models of cell populations sampled from those trees. In the process, we hope to develop a better understanding of tumor evolution as well as other biological problems that involve interpreting genomic data gathered from heterogeneous populations of cells.

摘要

背景

肿瘤发生是一个进化过程,肿瘤细胞通过连续的多样化和分化获得突变。由于其与识别突变驱动因素、预测未来预后和药物反应相关,人们对重建这一进化过程非常感兴趣。然而,患者内部和患者之间的高度肿瘤异质性给相关研究带来了挑战。在之前的工作中,我们表明,通过计算重建不同肿瘤中不同程度混合的细胞群体模型,可以将这种异质性转化为优势。然而,这种混合成员模型方法在剖析肿瘤数据集中多个保守细胞群体的能力方面仍然有限。

结果

我们提出了一种方法,通过更好地考虑癌症亚群之间保守的进展途径来改进当前的混合成员模型方法,这意味着一种以前未被利用的数据结构。我们扩展了之前的方法,之前的方法将混合问题解释为重建称为单纯形的简单几何对象,现在改为搜索称为单纯复形的单纯形的结构化并集,人们期望这些单纯复形出现在描述进化树分支的混合过程中。我们进一步用一个新的目标函数改进了之前的工作,以更好地识别与简约进化树模型相对应的混合物。我们证明这种方法提高了我们在模拟数据集上准确解析混合物的能力,并在一个大型RNA序列肿瘤数据集上证明了其实际适用性。

结论

更好地利用由共同进化树产生的混合成员模型的预期几何结构,使我们能够快速准确地重建从这些树中采样的细胞群体模型。在此过程中,我们希望能更好地理解肿瘤进化以及其他涉及解释从异质细胞群体收集的基因组数据的生物学问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e21/4534068/63de32f7b731/12859_2015_694_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验