Suppr超能文献

甘油醛-3-磷酸脱氢酶对乳酸乳球菌MG1363中的糖酵解通量没有调控作用。

Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363.

作者信息

Solem Christian, Koebmann Brian J, Jensen Peter R

机构信息

Section of Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

J Bacteriol. 2003 Mar;185(5):1564-71. doi: 10.1128/JB.185.5.1564-1571.2003.

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has previously been suggested to have almost absolute control over the glycolytic flux in Lactococcus lactis (B. Poolman, B. Bosman, J. Kiers, and W. N. Konings, J. Bacteriol. 169:5887-5890, 1987). Those studies were based on inhibitor titrations with iodoacetate, which specifically inhibits GAPDH, and the data suggested that it should be possible to increase the glycolytic flux by overproducing GAPDH activity. To test this hypothesis, we constructed a series of mutants with GAPDH activities from 14 to 210% of that of the reference strain MG1363. We found that the glycolytic flux was unchanged in the mutants overproducing GAPDH. Also, a decrease in the GAPDH activity had very little effect on the growth rate and the glycolytic flux until 25% activity was reached. Below this activity level, the glycolytic flux decreased proportionally with decreasing GAPDH activity. These data show that GAPDH activity has no control over the glycolytic flux (flux control coefficient = 0.0) at the wild-type enzyme level and that the enzyme is present in excess capacity by a factor of 3 to 4. The early experiments by Poolman and coworkers were performed with cells resuspended in buffer, i.e., nongrowing cells, and we therefore analyzed the control by GAPDH under similar conditions. We found that the glycolytic flux in resting cells was even more insensitive to changes in the GAPDH activity; in this case GAPDH was also present in a large excess and had no control over the glycolytic flux.

摘要

先前有研究表明,甘油醛-3-磷酸脱氢酶(GAPDH)对乳酸乳球菌的糖酵解通量几乎具有绝对的控制作用(B. Poolman、B. Bosman、J. Kiers和W. N. Konings,《细菌学杂志》169:5887 - 5890,1987年)。这些研究基于用碘乙酸进行的抑制剂滴定实验,碘乙酸可特异性抑制GAPDH,实验数据表明,通过过量表达GAPDH活性有可能提高糖酵解通量。为了验证这一假设,我们构建了一系列突变体,其GAPDH活性为参考菌株MG1363的14%至210%。我们发现,过量表达GAPDH的突变体中糖酵解通量没有变化。此外,GAPDH活性降低对生长速率和糖酵解通量的影响很小,直到活性降至25%。低于这个活性水平,糖酵解通量随GAPDH活性降低而成比例下降。这些数据表明,在野生型酶水平下,GAPDH活性对糖酵解通量没有控制作用(通量控制系数 = 0.0),并且该酶的容量过剩3至4倍。Poolman及其同事早期的实验是用重悬于缓冲液中的细胞进行的,即非生长细胞,因此我们在类似条件下分析了GAPDH的控制作用。我们发现,静息细胞中的糖酵解通量对GAPDH活性变化更不敏感;在这种情况下,GAPDH同样大量过剩,对糖酵解通量没有控制作用。

相似文献

1
Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363.
J Bacteriol. 2003 Mar;185(5):1564-71. doi: 10.1128/JB.185.5.1564-1571.2003.
2
Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
J Appl Microbiol. 2006 Jun;100(6):1364-72. doi: 10.1111/j.1365-2672.2006.02867.x.
3
5
10
Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
Appl Environ Microbiol. 2000 Sep;66(9):3686-91. doi: 10.1128/AEM.66.9.3686-3691.2000.

引用本文的文献

1
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
Molecules. 2023 Feb 2;28(3):1418. doi: 10.3390/molecules28031418.
2
Escherichia coli robustly expresses ATP synthase at growth rate-maximizing concentrations.
FEBS J. 2022 Aug;289(16):4925-4934. doi: 10.1111/febs.16401. Epub 2022 Mar 17.
3
Mutants Obtained From Laboratory Evolution Showed Elevated Vitamin K2 Content and Enhanced Resistance to Oxidative Stress.
Front Microbiol. 2021 Oct 14;12:746770. doi: 10.3389/fmicb.2021.746770. eCollection 2021.
4
Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria.
Front Microbiol. 2019 Apr 30;10:876. doi: 10.3389/fmicb.2019.00876. eCollection 2019.
5
Maintaining maximal metabolic flux by gene expression control.
PLoS Comput Biol. 2018 Sep 20;14(9):e1006412. doi: 10.1371/journal.pcbi.1006412. eCollection 2018 Sep.
6
Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance.
Bioengineered. 2015;6(6):328-34. doi: 10.1080/21655979.2015.1111493.
8
How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization.
FEBS J. 2015 May;282(10):2029-44. doi: 10.1111/febs.13258. Epub 2015 Mar 26.
9
Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation.
PLoS One. 2014 Sep 30;9(9):e106453. doi: 10.1371/journal.pone.0106453. eCollection 2014.
10
Optimality principles in the regulation of metabolic networks.
Metabolites. 2012 Aug 29;2(3):529-52. doi: 10.3390/metabo2030529.

本文引用的文献

1
Improved medium for lactic streptococci and their bacteriophages.
Appl Microbiol. 1975 Jun;29(6):807-13. doi: 10.1128/am.29.6.807-813.1975.
2
Minimal Requirements for Exponential Growth of Lactococcus lactis.
Appl Environ Microbiol. 1993 Dec;59(12):4363-6. doi: 10.1128/aem.59.12.4363-4366.1993.
4
6
Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
Appl Environ Microbiol. 2002 Sep;68(9):4274-82. doi: 10.1128/AEM.68.9.4274-4282.2002.
7
The glycolytic flux in Escherichia coli is controlled by the demand for ATP.
J Bacteriol. 2002 Jul;184(14):3909-16. doi: 10.1128/JB.184.14.3909-3916.2002.
8
Modulation of gene expression made easy.
Appl Environ Microbiol. 2002 May;68(5):2397-403. doi: 10.1128/AEM.68.5.2397-2403.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验