Akkerman Erik M
Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
Magn Reson Med. 2003 Mar;49(3):599-604. doi: 10.1002/mrm.10365.
The Platonic variance method produces MR diffusion anisotropy (DA) images with a minimum amount of computational effort. It can be programmed in a self-contained MR sequence, thus eliminating the need for postprocessing on a separate workstation. The method uses gradient acquisition schemes, based on Platonic solids: the "icosahedric" scheme (N = 6), the "dodecahedric" scheme (N = 10), and combinations thereof. For these schemes the average of the diffusion tensor eigenvalues equals the average of the measured apparent diffusion coefficients (ADCs), and the variance of the eigenvalues equals 5/2 times the variance of the diffusion coefficients. This results in compact expressions for anisotropy measures, directly in terms of the acquired images, i.e., without calculating the eigenvalues or even the tensor elements. The resulting anisotropy images were shown to be identical to the ones traditionally derived. It is expected that this method will considerably promote the routine use of DA imaging.
柏拉图方差法以最少的计算量生成磁共振扩散各向异性(DA)图像。它可以被编入一个独立的磁共振序列中,从而无需在单独的工作站上进行后处理。该方法使用基于柏拉图立体的梯度采集方案:“二十面体”方案(N = 6)、“十二面体”方案(N = 10)及其组合。对于这些方案,扩散张量特征值的平均值等于测量的表观扩散系数(ADC)的平均值,并且特征值的方差等于扩散系数方差的5/2倍。这就产生了直接根据采集图像得出的各向异性测量的紧凑表达式,即无需计算特征值甚至张量元素。结果表明,所得的各向异性图像与传统方法得出的图像相同。预计该方法将极大地促进DA成像的常规应用。