ter Rahe Birgitta S M, Majoie Charles B L M, Akkerman Erik M, den Heeten Gerard J, Poll-The Bwee T, Barth Peter G
Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
AJNR Am J Neuroradiol. 2004 Jun-Jul;25(6):1022-7.
Peroxisomal biogenesis disorders (PBDs) refer to a group of disorders of peroxisomal biogenesis causing neuronal migration disorder, delayed myelination, and demyelination. The aim of this study was to evaluate the added value of diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) compared with that of conventional T2-weighted imaging in assessing the extent of white matter damage in patients with PBDs.
Three patients (aged 12, 16, and 80 months) with PBD (type 1 protein targeting sequence [PTS1]) and three age-matched control subjects underwent MR imaging on a 1.5-T system. The protocol included axial T2-weighted, DWI, and DTI sequences. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) changes were calculated using regions of interest at several predefined white matter areas and compared with those of age-matched control subjects. Color-coded maps were obtained to visualize the range of FA values.
On the T2-weighted images, one patient revealed severe hypomyelination throughout the brain; the two other patients showed focal abnormal high-signal-intensity areas. All patients had significantly decreased FA values in white matter areas that appeared abnormal on the T2-weighted images. In two of the three patients, significant FA reduction was also found in normal-appearing white matter. The ADC values of the patients were significantly increased compared with those of the age-matched controls.
Although based on a small number of patients, our data suggest that DWI and DTI can be used to characterize and quantify white matter tract injury in patients with PBD-PTS1. Furthermore, our data suggest that these techniques have the potential to identify neurodegenerative changes not yet visible on T2-weighted images.