Weber John T, De Zeeuw Chris I, Linden David J, Hansel Christian
Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2878-83. doi: 10.1073/pnas.0536420100. Epub 2003 Feb 24.
In recent years much has been learned about the molecular requirements for inducing long-term synaptic depression (LTD) in various brain regions. However, very little is known about the consequences of LTD induction for subsequent signaling events in postsynaptic neurons. We have addressed this issue by examining homosynaptic LTD at the cerebellar climbing fiber (CF)-Purkinje cell (PC) synapse. This synapse is built for reliable and massive excitation: Activation of a single axon produces an unusually large alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated synaptic current, the depolarization of which drives a regenerative complex spike producing a large, widespread Ca(2+) transient in PC dendrites. Here we test whether CF LTD has an impact on dendritic, complex spike-evoked Ca(2+) signals by simultaneously performing long-term recordings of complex spikes and microfluorimetric Ca(2+) measurements in PC dendrites in rat cerebellar slices. Our data show that LTD of the CF excitatory postsynaptic current produces a reduction in both slow components of the complex spike waveform and complex spike-evoked dendritic Ca(2+) transients. This LTD of dendritic Ca(2+) signals may provide a neuroprotective mechanism and/or constitute "heterosynaptic metaplasticity" by reducing the probability for subsequent induction of those forms of use-dependent plasticity, which require CF-evoked Ca(2+) signals such as parallel fiber-PC LTD and interneuron-PC LTP.
近年来,人们对在不同脑区诱导长时程突触抑制(LTD)的分子要求有了很多了解。然而,对于在突触后神经元中诱导LTD对后续信号事件的影响却知之甚少。我们通过研究小脑攀缘纤维(CF)-浦肯野细胞(PC)突触处的同突触LTD来解决这个问题。这个突触用于可靠且大量的兴奋:单个轴突的激活会产生异常大的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体介导的突触电流,其去极化驱动再生性复合动作电位,在PC树突中产生大的、广泛的Ca(2+)瞬变。在这里,我们通过在大鼠小脑切片的PC树突中同时进行复合动作电位的长期记录和微荧光Ca(2+)测量,来测试CF LTD是否对树突、复合动作电位诱发的Ca(2+)信号有影响。我们的数据表明,CF兴奋性突触后电流的LTD会导致复合动作电位波形的慢成分以及复合动作电位诱发的树突Ca(2+)瞬变都减少。树突Ca(2+)信号的这种LTD可能提供一种神经保护机制和/或通过降低后续诱导那些依赖使用的可塑性形式的可能性来构成“异突触可塑性”,这些可塑性形式需要CF诱发的Ca(2+)信号,如平行纤维-PC LTD和中间神经元-PC LTP。