Suppr超能文献

The mammalian alcohol dehydrogenases interact in several metabolic pathways.

作者信息

Höög Jan Olov, Strömberg Patrik, Hedberg Jesper J, Griffiths William J

机构信息

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden.

出版信息

Chem Biol Interact. 2003 Feb 1;143-144:175-81. doi: 10.1016/s0009-2797(02)00225-9.

Abstract

Mammalian alcohol dehydrogenases (ADHs), including ADH1-ADH5/6, interact extensively in the oxidation and reduction of alcohols and aldehydes. ADH1 and ADH2 are involved in several metabolic pathways besides the oxidation of ethanol and have also been shown to be involved in drug transformations. The ADH2 enzymes show further complexity among the species, e.g. in enzymatic characteristics where the rodent forms essentially lack ethanol-oxidizing capacity. ADH3 (glutathione-dependent formaldehyde dehydrogenase) has been shown to catalyze the reductive breakdown of S-nitrosoglutathione, indicating involvement in nitric oxide metabolism. Mass spectrometry identified the major enzymatic product as glutathione sulfinamide. This reductive breakdown directly interferes with the formaldehyde scavenging that has been proposed to be the physiological action of ADH3. The human ADH5 and rodent ADH6 seem to be the corresponding enzymes due to their similar behavior. None of these latter ADHs have so far been assigned to any function. They can be expressed as recombinant proteins but no enzymatic activity has been detected.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验