Suppr超能文献

DNA多态性:核酸力场的比较

DNA polymorphism: a comparison of force fields for nucleic acids.

作者信息

Reddy Swarnalatha Y, Leclerc Fabrice, Karplus Martin

机构信息

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.

出版信息

Biophys J. 2003 Mar;84(3):1421-49. doi: 10.1016/S0006-3495(03)74957-1.

Abstract

The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)(2) in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies.

摘要

力场的改进以及对长程相互作用更精确的处理,正在为核酸提供更可靠的分子动力学模拟。比较了某些核酸力场表征溶液中核酸结构和构象性质的能力。这些力场包括AMBER 4.1、BMS、CHARMM22和CHARMM27;本文主要关注后两者的比较。首先通过粒子网格埃瓦尔德方法处理长程静电的模拟,评估每个力场在溶液中重现B-DNA十聚体d(CGATTAATCG)(2)的能力;所有模拟均以昆塔纳等人(1992年)确定的晶体结构为起点。对结构和溶剂化性质的详细分析表明了不同力场能够多好地重现序列特异性特征。将结果与实验数据和先前的理论研究数据进行了比较。

相似文献

1
DNA polymorphism: a comparison of force fields for nucleic acids.
Biophys J. 2003 Mar;84(3):1421-49. doi: 10.1016/S0006-3495(03)74957-1.
3
On the truncation of long-range electrostatic interactions in DNA.
Biophys J. 2000 Sep;79(3):1537-53. doi: 10.1016/S0006-3495(00)76405-8.
4
Structural equilibrium of DNA represented with different force fields.
Biophys J. 1998 Jul;75(1):134-49. doi: 10.1016/S0006-3495(98)77501-0.
5
A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
Biophys J. 1997 Nov;73(5):2313-36. doi: 10.1016/S0006-3495(97)78263-8.
6
Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method.
J Biomol NMR. 1999 Feb;13(2):119-31. doi: 10.1023/a:1008353423074.
8
Sequence-dependent elastic properties of DNA.
J Mol Biol. 2000 Jun 9;299(3):695-709. doi: 10.1006/jmbi.2000.3781.
9
Molecular dynamics simulation of nucleic acids: successes, limitations, and promise.
Biopolymers. 2000;56(4):232-56. doi: 10.1002/1097-0282(2000)56:4<232::AID-BIP10037>3.0.CO;2-H.

引用本文的文献

1
Benchmark assessment of molecular geometries and energies from small molecule force fields.
F1000Res. 2020 Dec 3;9. doi: 10.12688/f1000research.27141.1. eCollection 2020.
2
Mechanical evolution of DNA double-strand breaks in the nucleosome.
PLoS Comput Biol. 2018 Jun 14;14(6):e1006224. doi: 10.1371/journal.pcbi.1006224. eCollection 2018 Jun.
5
The ABCs of molecular dynamics simulations on B-DNA, circa 2012.
J Biosci. 2012 Jul;37(3):379-97. doi: 10.1007/s12038-012-9222-6.
7
Evaluation of DNA Force Fields in Implicit Solvation.
J Chem Theory Comput. 2011 Oct 11;7(10):3181-3198. doi: 10.1021/ct200384r.
9
Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers.
Nucleic Acids Res. 2011 Jun;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub 2011 Feb 22.
10
Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.
J Phys Chem B. 2011 Jan 27;115(3):580-96. doi: 10.1021/jp1092338. Epub 2010 Dec 17.

本文引用的文献

1
Molecular dynamics simulation of nucleic acids: successes, limitations, and promise.
Biopolymers. 2000;56(4):232-56. doi: 10.1002/1097-0282(2000)56:4<232::AID-BIP10037>3.0.CO;2-H.
2
Molecular dynamics simulation of nucleic acids.
Annu Rev Phys Chem. 2000;51:435-71. doi: 10.1146/annurev.physchem.51.1.435.
4
Nucleic acids: theory and computer simulation, Y2K.
Curr Opin Struct Biol. 2000 Apr;10(2):182-96. doi: 10.1016/s0959-440x(00)00076-2.
5
X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution.
Biopolymers. 1998;48(4):234-52. doi: 10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H.
6
Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR.
Biopolymers. 1998;48(4):210-33. doi: 10.1002/(sici)1097-0282(1998)48:4<210::aid-bip3>3.3.co;2-p.
7
Conformational flexibility of B-DNA at 0.74 A resolution: d(CCAGTACTGG)(2).
J Mol Biol. 2000 Feb 25;296(3):787-801. doi: 10.1006/jmbi.1999.3478.
8
Sequence-specific binding of counterions to B-DNA.
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):629-33. doi: 10.1073/pnas.97.2.629.
9
DNA multimode interaction with berenil and pentamidine; double helix stiffening, unbending and bending.
J Biomol Struct Dyn. 1999 Oct;17(2):311-31. doi: 10.1080/07391102.1999.10508364.
10
Sodium and chlorine ions as part of the DNA solvation shell.
Biophys J. 1999 Oct;77(4):1769-81. doi: 10.1016/S0006-3495(99)77023-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验